
Claudia Rossig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SIRPα-specific monoclonal antibody enables antibody-dependent phagocytosis of neuroblastoma cells. Cancer Immunology, Immunotherapy, 2022, 71, 71-83.	4.2	11
2	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
3	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	4.8	20
4	Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial. Leukemia, 2022, 36, 1516-1524.	7.2	21
5	The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers, 2022, 14, 2177.	3.7	2
6	SS18-SSX drives CREB activation in synovial sarcoma. Cellular Oncology (Dordrecht), 2022, 45, 399-413.	4.4	2
7	A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood, 2021, 137, 1582-1590.	1.4	48
8	Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. Journal of Fungi (Basel, Switzerland), 2021, 7, 186.	3.5	18
9	Surface expression of the immunotherapeutic target <scp>G_{D2}</scp> in osteosarcoma depends on cell confluency. Cancer Reports, 2021, 4, e1394.	1.4	6
10	Expression of disialoganglioside GD2 and prognosis in breast cancer subtypes. Senologie - Zeitschrift Für Mammadiagnostik Und -therapie, 2021, 18, .	0.0	0
11	HLA-G and HLA-E Immune Checkpoints Are Widely Expressed in Ewing Sarcoma but Have Limited Functional Impact on the Effector Functions of Antigen-Specific CAR T Cells. Cancers, 2021, 13, 2857.	3.7	11
12	Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA-JMML-001 trial. Blood Advances, 2021, 5, 2901-2908.	5.2	29
13	Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML. Blood Advances, 2021, 5, 4413-4421.	5.2	9
14	Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study. Lancet Oncology, The, 2021, 22, 1312-1321.	10.7	50
15	Phase I/II study of single-agent lenvatinib in children and adolescents with refractory or relapsed solid malignancies and young adults with osteosarcoma (ITCC-050)â~†. ESMO Open, 2021, 6, 100250.	4.5	27
16	Generation of an NFκB-Driven Alpharetroviral "All-in-One―Vector Construct as a Potent Tool for CAR NK Cell Therapy. Frontiers in Immunology, 2021, 12, 751138.	4.8	11
17	Variable Expression of the Disialoganglioside GD2 in Breast Cancer Molecular Subtypes. Cancers, 2021, 13, 5577.	3.7	5
18	Comprehensive assessments and related interventions to enhance the long-term outcomes of child, adolescent and young adult cancer survivors – presentation of the CARE for CAYA-Program study protocol and associated literature review. BMC Cancer, 2020, 20, 16.	2.6	25

#	Article	IF	CITATIONS
19	VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma. Pediatric Blood and Cancer, 2020, 67, e28313.	1.5	24
20	Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: results of the RIALTO trial, an expanded access study. Blood Cancer Journal, 2020, 10, 77.	6.2	65
21	Impact of COVID-19 in paediatric early-phase cancer clinical trials in Europe: A report from the Innovative Therapies for Children with Cancer (ITCC) consortium. European Journal of Cancer, 2020, 141, 82-91.	2.8	15
22	Overcoming Heterogeneity of Antigen Expression for Effective CAR T Cell Targeting of Cancers. Cancers, 2020, 12, 1075.	3.7	57
23	Design and Characterization of an "All-in-One―Lentiviral Vector System Combining Constitutive Anti-GD2 CAR Expression and Inducible Cytokines. Cancers, 2020, 12, 375.	3.7	68
24	ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. European Journal of Cancer, 2020, 127, 52-66.	2.8	52
25	A Phase II Study of Single-Agent Inotuzumab Ozogamicin in Pediatric CD22-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of the ITCC-059 Study. Blood, 2020, 136, 8-9.	1.4	10
26	Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: a report by Berlin-Frankfurt-MA¼nster study group. Haematologica, 2019, 104, 120-127.	3.5	38
27	CD171- and GD2-specific CAR-T cells potently target retinoblastoma cells in preclinical in vitro testing. BMC Cancer, 2019, 19, 895.	2.6	40
28	Requirement for YAP1 signaling in myxoid liposarcoma. EMBO Molecular Medicine, 2019, 11, .	6.9	25
29	EZH2 Inhibition in Ewing Sarcoma Upregulates GD2 Expression for Targeting with Gene-Modified T Cells. Molecular Therapy, 2019, 27, 933-946.	8.2	69
30	SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma. Clinical Cancer Research, 2019, 25, 3718-3731.	7.0	36
31	Phosphatidylinositol-3-kinase (PI3K)/Akt Signaling is Functionally Essential in Myxoid Liposarcoma. Molecular Cancer Therapeutics, 2019, 18, 834-844.	4.1	28
32	Prevalence of the Hippo Effectors YAP1/TAZ in Tumors of Soft Tissue and Bone. Scientific Reports, 2019, 9, 19704.	3.3	18
33	Redirecting T cells to treat solid pediatric cancers. Cancer and Metastasis Reviews, 2019, 38, 611-624.	5.9	3
34	Only strongly enhanced residual FDG uptake in early response PET (Deauville 5 or qPET ≥ 2) is prognostic in pediatric Hodgkin lymphoma: Results of the GPOHâ€HD2002 trial. Pediatric Blood and Cancer, 2019, 66, e27539.	1.5	12
35	Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia, 2019, 33, 884-892.	7.2	158
36	Programmed cell death ligand 1 (PD‣1) expression is not a predominant feature in Ewing sarcomas. Pediatric Blood and Cancer, 2018, 65, e26719.	1.5	39

#	Article	IF	CITATIONS
37	CAR T cell immunotherapy in hematology and beyond. Clinical Immunology, 2018, 186, 54-58.	3.2	19
38	Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Frontiers in Oncology, 2018, 8, 513.	2.8	29
39	T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G. Oncotarget, 2018, 9, 6536-6549.	1.8	37
40	Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia, 2017, 31, 1087-1095.	7.2	64
41	Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clinical Cancer Research, 2017, 23, 3499-3509.	7.0	76
42	FUS–DDIT3 Fusion Protein-Driven IGF-IR Signaling is a Therapeutic Target in Myxoid Liposarcoma. Clinical Cancer Research, 2017, 23, 6227-6238.	7.0	40
43	PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone Marrow Transplantation, 2017, 52, 317-320.	2.4	81
44	Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncolmmunology, 2017, 6, e1250050.	4.6	86
45	Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells. Oncotarget, 2017, 8, 108584-108603.	1.8	42
46	Trabectedin Followed by Irinotecan Can Stabilize Disease in Advanced Translocation-Positive Sarcomas with Acceptable Toxicity. Sarcoma, 2016, 2016, 1-6.	1.3	16
47	Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Therapy, 2016, 23, 615-626.	4.5	30
48	Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9VÎ′2+ γÎ́T cells. OncoImmunology, 2016, 5, e1025194.	4.6	27
49	Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia, 2016, 30, 970-973.	7.2	54
50	Functional Consequences of TCAB1 Mutations in Dyskeratosis Congenita. Blood, 2016, 128, 3890-3890.	1.4	0
51	Development of Curative Therapies for Ewing Sarcomas by Interdisciplinary Cooperative Groups in Europe. Klinische Padiatrie, 2015, 227, 108-115.	0.6	9
52	Deep Sequencing in Conjunction with Expression and Functional Analyses Reveals Activation of FGFR1 in Ewing Sarcoma. Clinical Cancer Research, 2015, 21, 4935-4946.	7.0	68
53	Anchorage-independent growth of Ewing sarcoma cells under serum-free conditions is not associated with stem-cell like phenotype and function. Oncology Reports, 2014, 32, 845-852.	2.6	20
54	High Proportions of CD4+ T Cells among Residual Bone Marrow T Cells in Childhood Acute Lymphoblastic Leukemia Are Associated with Favorable Early Responses. Acta Haematologica, 2014, 131, 28-36.	1.4	13

#	Article	IF	CITATIONS
55	Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individuals. Cancer Immunology, Immunotherapy, 2014, 63, 1047-1060.	4.2	18
56	Cellular immunotherapy strategies for Ewing sarcoma. Immunotherapy, 2014, 6, 611-621.	2.0	10
57	Extending the chimeric receptor-based T-cell targeting strategy to solid tumors. Oncolmmunology, 2013, 2, e26091.	4.6	8
58	Ewing sarcoma dissemination and response to T-cell therapy in mice assessed by whole-body magnetic resonance imaging. British Journal of Cancer, 2013, 109, 658-666.	6.4	23
59	Effective childhood cancer treatment: The impact of large scale clinical trials in Germany and Austria. Pediatric Blood and Cancer, 2013, 60, 1574-1581.	1.5	70
60	Zoledronic acid negatively affects the expansion of in vitro activated human NK cells and their cytolytic interactions with Ewing sarcoma cells. Oncology Reports, 2013, 29, 2348-2354.	2.6	8
61	Immune modulation by molecular cancer targets and targeted therapies. Oncolmmunology, 2012, 1, 358-360.	4.6	1
62	NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR–ABL-positive mice. Leukemia, 2012, 26, 465-474.	7.2	56
63	The ganglioside antigen GD2 is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. British Journal of Cancer, 2012, 106, 1123-1133.	6.4	112
64	Activated human Î ³ δT cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunology, Immunotherapy, 2012, 61, 385-396.	4.2	36
65	Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood, 2011, 118, 6050-6056.	1.4	984
66	Research recommendations toward a better understanding of the causes of childhood leukemia. Blood Cancer Journal, 2011, 1, e1-e1.	6.2	6
67	Sequential acquisition of IgH and TCR rearrangements during the preleukemic phase of acute lymphoblastic leukemia in an adolescent patient. Pediatric Blood and Cancer, 2011, 56, 301-303.	1.5	1
68	Relapsed or Refractory Anaplastic Large-Cell Lymphoma in Children and Adolescents After Berlin-Frankfurt-Muenster (BFM)–Type First-Line Therapy: A BFM-Group Study. Journal of Clinical Oncology, 2011, 29, 3065-3071.	1.6	101
69	New Targets and Targeted Drugs for the Treatment of Cancer: An Outlook to Pediatric Oncology. Pediatric Hematology and Oncology, 2011, 28, 539-555.	0.8	9
70	2B4 (CD244) Signaling by Recombinant Antigen-specific Chimeric Receptors Costimulates Natural Killer Cell Activation to Leukemia and Neuroblastoma Cells. Clinical Cancer Research, 2009, 15, 4857-4866.	7.0	171
71	A high proportion of bone marrow T cells with regulatory phenotype (CD4+CD25 ^{hi} FoxP3+) in Ewing sarcoma patients is associated with metastatic disease. International Journal of Cancer, 2009, 125, 879-886.	5.1	51
72	2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer Immunology, Immunotherapy, 2009, 58, 1991-2001.	4.2	38

#	Article	IF	CITATIONS
73	Activated Human γδT Cells as Stimulators of Specific CD8+ T-cell Responses to Subdominant Epstein Barr Virus Epitopes. Journal of Immunotherapy, 2009, 32, 310-321.	2.4	34
74	Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 2008, 14, 1264-1270.	30.7	1,063
75	Aetiology of childhood acute leukaemias: current status of knowledge. Radiation Protection Dosimetry, 2008, 132, 114-118.	0.8	27
76	Gene-Engineered Varicella-Zoster Virus–Reactive CD4+ Cytotoxic T Cells Exert Tumor-Specific Effector Function. Cancer Research, 2007, 67, 8335-8343.	0.9	30
77	Target Antigen Expression on a Professional Antigen-Presenting Cell Induces Superior Proliferative Antitumor T-Cell Responses via Chimeric T-Cell Receptors. Journal of Immunotherapy, 2006, 29, 21-31.	2.4	27
78	CD28 co-stimulation via tumour-specific chimaeric receptors induces an incomplete activation response in Epstein-Barr virus-specific effector memory T cells. Clinical and Experimental Immunology, 2006, 144, 447-457.	2.6	15
79	Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia, 2006, 20, 1819-1828.	7.2	179
80	Rhabdomyosarcoma Lysis by T Cells Expressing a Human Autoantibody-Based Chimeric Receptor Targeting the Fetal Acetylcholine Receptor. Cancer Research, 2006, 66, 24-28.	0.9	45
81	Adoptive Cellular Immunotherapy with CD19-Specific T Cells. Klinische Padiatrie, 2005, 217, 351-356.	0.6	24
82	T-Cells Redirected Against the kappa Light Chain of Human Immunoglobulins Target Mature B Cell Derived Malignancies In Vitro and In Vivo Blood, 2005, 106, 612-612.	1.4	1
83	Human Î ³ δT cells as mediators of chimaeric-receptor redirected anti-tumour immunity. British Journal of Haematology, 2004, 126, 583-592.	2.5	103
84	Genetic Modification of T Lymphocytes for Adoptive Immunotherapy. Molecular Therapy, 2004, 10, 5-18.	8.2	77
85	Spezifische Immuntherapien zur Behandlung von Krebs im Kindesalter. Monatsschrift Fur Kinderheilkunde, 2003, 151, 646-653.	0.1	0
86	Epstein-Barr virus–specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood, 2002, 99, 2009-2016.	1.4	185
87	Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood, 2002, 99, 3179-3187.	1.4	310
88	Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. International Journal of Cancer, 2001, 94, 228-236.	5.1	143
89	Selection of human antitumor single-chain Fv antibodies from the B-cell repertoire of patients immunized against autologous neuroblastoma. Medical and Pediatric Oncology, 2000, 35, 692-695.	1.0	10