
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6545085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signal amplification strategies for clinical biomarker quantification using elemental mass spectrometry. Analytical and Bioanalytical Chemistry, 2022, 414, 53-62.	3.7	4
2	Design and Evaluation of a Competitive Phosphorescent Immunosensor for Aflatoxin M1 Quantification in Milk Samples Using Mn:ZnS Quantum Dots as Antibody Tags. Chemosensors, 2022, 10, 41.	3.6	0
3	Near-Infrared Sensors for Onsite and Noninvasive Quantification of Macronutrients in Breast Milk. Sensors, 2022, 22, 1311.	3.8	6
4	Advances in quantum dots as diagnostic tools. Advances in Clinical Chemistry, 2022, 107, 1-40.	3.7	8
5	Inorganic nanoparticles coupled to nucleic acid enzymes as analytical signal amplification tools. Analytical and Bioanalytical Chemistry, 2022, 414, 5201-5215.	3.7	3
6	Analytical tools for the characterization and quantification of metal nanoclusters. , 2022, , 57-88.		0
7	Exploring quantitative cellular bioimaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS. Talanta, 2021, 227, 122162.	5.5	8
8	Optoelectronic Instrumentation and Measurement Strategies for Optical Chemical (Bio)Sensing. Applied Sciences (Switzerland), 2021, 11, 7849.	2.5	3
9	Distributions of mercury and selenium in rats ingesting mercury selenide nanoparticles. Ecotoxicology and Environmental Safety, 2021, 226, 112867.	6.0	10
10	Formation Mechanism and Toxicological Significance of Biogenic Mercury Selenide Nanoparticles in Human Hepatoma HepG2 Cells. Chemical Research in Toxicology, 2021, 34, 2471-2484.	3.3	11
11	Capabilities of asymmetrical flow field – Flow fractionation on-line coupled to different detectors for characterization of water-stabilized quantum dots bioconjugated to biomolecules. Talanta, 2020, 206, 120228.	5.5	10
12	Obtaining information from the brain in a non-invasive way: determination of iron in nasal exudate to differentiate hemorrhagic and ischemic strokes. Clinical Chemistry and Laboratory Medicine, 2020, 58, 847-853.	2.3	9
13	Catalytic Gold Deposition for Ultrasensitive Optical Immunosensing of Prostate Specific Antigen. Sensors, 2020, 20, 5287.	3.8	5
14	Integrated analytical platforms for the comprehensive characterization of bioconjugated inorganic nanomaterials aiming at biological applications. Journal of Analytical Atomic Spectrometry, 2020, 35, 1518-1529.	3.0	15
15	Assessment of the Potential and Limitations of Elemental Mass Spectrometry in Life Sciences for Absolute Quantification of Biomolecules Using Generic Standards. Analytical Chemistry, 2020, 92, 13500-13508.	6.5	11
16	Portable Instrument for Monitoring Environmental Toxins Using Immobilized Quantum Dots as the Sensing Material. Applied Sciences (Switzerland), 2020, 10, 3246.	2.5	3
17	Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells. Journal of Analytical Atomic Spectrometry, 2020, 35, 1979-1988.	3.0	9
18	Visual detection of microRNA146a by using RNA-functionalized gold nanoparticles. Mikrochimica Acta, 2020, 187, 192.	5.0	16

#	Article	IF	CITATIONS
19	Electrochemical quantification of Ag2S quantum dots: evaluation of different surface coating ligands for bacteria determination. Mikrochimica Acta, 2020, 187, 169.	5.0	9
20	Quantum Dot Bioconjugates for Diagnostic Applications. Topics in Current Chemistry, 2020, 378, 35.	5.8	36
21	Iron Measured in Nasal Exudate Samples as a New and Useful Biomarker in the Differential Diagnosis of Patients with Acute Stroke. Cerebrovascular Diseases, 2020, 49, 625-631.	1.7	1
22	Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS. Journal of Analytical Atomic Spectrometry, 2019, 34, 655-663.	3.0	47
23	Functionalized phosphorescent nanoparticles in (bio)chemical sensing and imaging – A review. Analytica Chimica Acta, 2019, 1046, 16-31.	5.4	49
24	Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media. Nanomaterials, 2019, 9, 1103.	4.1	28
25	Carbon Quantum Dots Codoped with Nitrogen and Lanthanides for Multimodal Imaging. Advanced Functional Materials, 2019, 29, 1903884.	14.9	76
26	Simple and rapid electrochemical quantification of water-stabilized HgSe nanoparticles of great concern in environmental studies. Talanta, 2019, 200, 72-77.	5.5	5
27	Community Leaders: Alfredo Sanz-Medel. Journal of Analytical Atomic Spectrometry, 2019, 34, 633-635.	3.0	0
28	Quantitative Assessment of Individual Populations Present in Nanoparticle–Antibody Conjugate Mixtures Using AF4-ICP-MS/MS. Analytical Chemistry, 2019, 91, 3567-3574.	6.5	18
29	Near-infrared fluorescent nanoprobes for highly sensitive cyanide quantification in natural waters. Talanta, 2019, 192, 463-470.	5.5	15
30	Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. TrAC - Trends in Analytical Chemistry, 2018, 104, 148-159.	11.4	38
31	Phosphorescence (a) Principles and Instrumentationa ⁻ †. , 2018, , 284-284.		0
32	Optical Atomic Emission Spectrometry/Flame Photometry. , 2018, , .		1
33	Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein Journal of Nanotechnology, 2018, 9, 530-544.	2.8	139
34	Isotopically enriched nanoparticles in combination with mass spectrometry for the assessment of nanoparticle-biomolecule stoichiometries in engineered nanoassemblies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 99-106.	2.9	5
35	Controlling Ligand Surface Density on Streptavidin-Magnetic Particles by a Simple, Rapid, and Reliable Chemiluminescent Test. Bioconjugate Chemistry, 2018, 29, 2646-2653.	3.6	9
36	Capping of Mn-Doped ZnS Quantum Dots with DHLA for Their Stabilization in Aqueous Media: Determination of the Nanoparticle Number Concentration and Surface Ligand Density. Langmuir, 2017, 33, 6333-6341.	3.5	32

#	Article	IF	CITATIONS
37	Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry. Journal of Chromatography A, 2017, 1519, 156-161.	3.7	8
38	Sensitive prostate specific antigen quantification using dihydrolipoic acid surface-functionalized phosphorescent quantum dots. Analytica Chimica Acta, 2017, 987, 118-126.	5.4	17
39	Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V). PLoS ONE, 2017, 12, e0170869.	2.5	15
40	Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification. Biosensors and Bioelectronics, 2016, 85, 128-134.	10.1	36
41	Elemental Mass Spectrometry for Absolute Intact Protein Quantification without Protein-Specific Standards: Application to Snake Venomics. Analytical Chemistry, 2016, 88, 9699-9706.	6.5	47
42	Improving the analytical performance of a phosphorescent nanosensor by optimizing a ratiometric technique. Sensors and Actuators B: Chemical, 2016, 233, 574-581.	7.8	2
43	Mass spectrometry for the characterization and quantification of engineered inorganic nanoparticles. TrAC - Trends in Analytical Chemistry, 2016, 84, 139-148.	11.4	46
44	Precise determination of the nanoparticle concentration and ligand density of engineered water-soluble HgSe fluorescent nanoparticles. RSC Advances, 2016, 6, 19964-19972.	3.6	19
45	Determination of the ratio of fluorophore/nanoparticle for fluorescence-labelled nanoparticles. Analyst, The, 2016, 141, 1266-1272.	3.5	9
46	Voltammetric determination of size and particle concentration of Cd-based quantum dots. Electrochimica Acta, 2015, 166, 100-106.	5.2	19
47	Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency. Journal of Chromatography A, 2015, 1422, 247-252.	3.7	21
48	Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots. Analytica Chimica Acta, 2015, 879, 77-84.	5.4	25
49	Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters. Nanotechnology, 2015, 26, 215601.	2.6	15
50	Photoluminescent Nanoparticles for Optical Imaging in Biology and Medicine. Frontiers in Nanobiomedical Research, 2014, , 307-344.	0.1	0
51	Improving pulsed radiofrequency glow discharge for time-of-flight mass spectrometry simultaneous elemental and molecular analysis. Analytical and Bioanalytical Chemistry, 2014, 406, 7431-7443.	3.7	Ο
52	Mass Spectrometry for the Characterization of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 329-356.	1.3	10
53	A Quantum Dot-Based Immunoassay for Screening of Tetracyclines in Bovine Muscle. Journal of Agricultural and Food Chemistry, 2014, 62, 1733-1740.	5.2	46
54	Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2014, 839, 8-13.	5.4	29

#	Article	IF	CITATIONS
55	Nanostructural transformations of silver nanoclusters occurring during their synthesis and after interaction with UV-light. Materials Research Express, 2014, 1, 015039.	1.6	10
56	A General Perspective of the Characterization and Quantification of Nanoparticles: Imaging, Spectroscopic, and Separation Techniques. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 423-458.	12.3	72
57	The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	16
58	Room temperature phosphorimetric determination of bromate in flour based on energy transfer. Talanta, 2013, 116, 231-236.	5.5	10
59	Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties. Nanoscale, 2013, 5, 9156.	5.6	62
60	One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction. Nanotechnology, 2013, 24, 495601.	2.6	38
61	Synthesis and characterization of hapten-quantum dots bioconjugates: Application to development of a melamine fluorescentimmunoassay. Talanta, 2013, 106, 243-248.	5.5	13
62	An Overview of Atomic Spectrometric Techniques. Metal lons in Life Sciences, 2013, , 1-51.	1.0	0
63	Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation. Analytica Chimica Acta, 2012, 712, 120-126.	5.4	81
64	Immobilization of phosphorescent quantum dots in a sol–gel matrix for acetone sensing. Sensors and Actuators B: Chemical, 2012, 174, 102-108.	7.8	24
65	Elemental and molecular detection for Quantum Dots-based immunoassays: A critical appraisal. Biosensors and Bioelectronics, 2012, 33, 165-171.	10.1	44
66	Reusable phosphorescent probes based on molecularly imprinted polymers for the determination of propranolol in urine. Sensors and Actuators B: Chemical, 2012, 168, 370-375.	7.8	14
67	New integrated elemental and molecular strategies as a diagnostic tool for the quality of water soluble quantum dots and their bioconjugates. Nanoscale, 2011, 3, 954.	5.6	31
68	Plasma-based mass spectrometry for simultaneous acquisition of elemental and molecular information. Analyst, The, 2011, 136, 246-256.	3.5	16
69	Conjugated Polymer Microspheres for "Turn-Offâ€ / "Turn-On―Fluorescence Optosensing of Inorganic Ions in Aqueous Media. Analytical Chemistry, 2011, 83, 2712-2718.	6.5	45
70	Fluorescent conjugated polymers for chemical and biochemical sensing. TrAC - Trends in Analytical Chemistry, 2011, 30, 1513-1525.	11.4	102
71	Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk. Biosensors and Bioelectronics, 2011, 26, 4753-4759.	10.1	62
72	Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications. Nanotechnology, 2011, 22, 385703.	2.6	14

#	Article	IF	CITATIONS
73	Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Analytical and Bioanalytical Chemistry, 2011, 399, 29-42.	3.7	114
74	Quantum dot-based array for sensitive detection of Escherichia coli. Analytical and Bioanalytical Chemistry, 2011, 399, 2755-2762.	3.7	38
75	Elemental ratio determinations and compound-independent calibration using microsecond pulsed glow discharge time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 401, 2771-2777.	3.7	7
76	Present and future of glow discharge — Time of flight mass spectrometry in analytical chemistry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 399-412.	2.9	38
77	Characterization of photoluminescence activation of semiconductor nanoparticles for optical sensors. , 2010, , .		Ο
78	Inorganic mass spectrometry as a tool for characterisation at the nanoscale. Analytical and Bioanalytical Chemistry, 2010, 396, 15-29.	3.7	55
79	Chemical characterization of engineered nanoparticles. Analytical and Bioanalytical Chemistry, 2010, 396, 951-952.	3.7	19
80	A focus on quantum dots for luminescent bioanalysis. Analytical and Bioanalytical Chemistry, 2010, 397, 1395-1396.	3.7	2
81	Sol–gels doped with polymer-coated ZnS/CdSe quantum dots for the detection of organic vapors. Sensors and Actuators B: Chemical, 2010, 144, 198-202.	7.8	28
82	Gas chromatography coupled to tunable pulsed glow discharge time-of-flight mass spectrometry for environmental analysis. Analyst, The, 2010, 135, 987.	3.5	11
83	Halogenated molecularly imprinted polymers for selective determination of carbaryl by phosphorescence measurements. Analytical and Bioanalytical Chemistry, 2009, 394, 1569-1576.	3.7	11
84	A critical comparison between two different ratiometric techniques for optical luminescence sensing. Sensors and Actuators B: Chemical, 2009, 139, 237-244.	7.8	12
85	Tuneable Microsecond-Pulsed Glow Discharge Design for the Simultaneous Acquisition of Elemental and Molecular Chemical Information Using a Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2009, 81, 2591-2599.	6.5	24
86	Elemental mass spectrometry: a powerful tool for an accurate characterisation at elemental level of quantum dots. Chemical Communications, 2009, , 3107.	4.1	41
87	Entrapment of quantum dots in sol–gel matrices to develop sensing material based on fluorescence resonance energy transfer. Chemical Communications, 2009, , 5454.	4.1	10
88	Chapter 1. A General Overview of Atomic Spectrometric Techniques. Metal lons in Life Sciences, 2009, , 1-50.	1.0	0
89	Bromine determination in polymers by inductively coupled plasma-mass spectrometry and its potential for fast first screening of brominated flame retardants in polymers and paintings. Analytica Chimica Acta, 2008, 623, 140-145.	5.4	22
90	Simple bio-conjugation of polymer-coated quantum dots with antibodies for fluorescence-based immunoassays. Analyst, The, 2008, 133, 444.	3.5	46

#	Article	IF	CITATIONS
91	Measurement of Polycyclic Aromatic Hydrocarbons by using Molecularly Imprinted Polymers. , 2008, , .		1
92	Ratiometric Methods For Optical Fiber Instrumentation Based On Luminescence Sensors. , 2008, , .		1
93	Direct and rapid discrimination of aflatoxigenic strains based on fibre-optic room temperature phosphorescence detection. Analyst, The, 2007, 132, 307-313.	3.5	9
94	Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots). Journal of Materials Chemistry, 2007, 17, 1343-1346.	6.7	108
95	Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers. Analyst, The, 2007, 132, 218-223.	3.5	67
96	Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection. Analytica Chimica Acta, 2007, 589, 51-58.	5.4	53
97	A molecularly imprinted polymer for carbaryl determination in water. Sensors and Actuators B: Chemical, 2007, 123, 798-804.	7.8	78
98	Quantification of bromine in flame-retardant coatings by radiofrequency glow discharge–optical emission spectrometry. Analytical and Bioanalytical Chemistry, 2007, 389, 683-690.	3.7	11
99	Solid-supported room temperature phosphorescence from aflatoxins for analytical detection of Aspergillus spp. strains. Analyst, The, 2006, 131, 785-787.	3.5	5
100	A ratiometric approach for pH optosensing with a single fluorophore indicator. Analytica Chimica Acta, 2006, 562, 197-203.	5.4	24
101	Determination of phosphorescence lifetimes in the presence of high background signals using phase-shift measurements. Sensors and Actuators B: Chemical, 2006, 113, 249-258.	7.8	18
102	Luminescent ratiometric method in the frequency domain with dual phase-shift measurements: Application to oxygen sensing. Sensors and Actuators B: Chemical, 2006, 117, 266-273.	7.8	26
103	The use of luminescent quantum dots for optical sensing. TrAC - Trends in Analytical Chemistry, 2006, 25, 207-218.	11.4	486
104	Room-temperature phosphorescence (RTP) for optical sensing. TrAC - Trends in Analytical Chemistry, 2006, 25, 958-967.	11.4	129
105	Optical sensors based on luminescent quantum dots. Analytical and Bioanalytical Chemistry, 2006, 384, 37-40.	3.7	54
106	Design of a Low-Cost Optical Instrument for pH Fluorescence Measurements. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1215-1221.	4.7	24
107	Tailoring the pH response range of fluorescent-based pH sensing phases by sol–gel surfactants co-immobilization. Sensors and Actuators B: Chemical, 2005, 107, 69-76.	7.8	39
108	Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Analytica Chimica Acta, 2005, 549, 20-25.	5.4	191

#	Article	IF	CITATIONS
109	Iodinated molecularly imprinted polymer for room temperature phosphorescence optosensing of fluoranthene. Chemical Communications, 2005, , 3224.	4.1	30
110	Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chemical Communications, 2005, , 883-885.	4.1	294
111	Flow-through optosensing of 1-naphthaleneacetic acid in water and apples by heavy atom induced–room temperature phosphorescence measurements. Talanta, 2005, 66, 696-702.	5.5	17
112	Dual emission probe for luminescence oxygen sensing: a critical comparison between intensity, lifetime and ratiometric measurements. Talanta, 2005, 66, 611-618.	5.5	38
113	Molecularly Imprinted Polymers Based on Iodinated Monomers for Selective Room-Temperature Phosphorescence Optosensing of Fluoranthene in Waterâ€. Analytical Chemistry, 2005, 77, 7005-7011.	6.5	53
114	Radiofrequency glow-discharge devices for direct solid analysis. Analytical and Bioanalytical Chemistry, 2004, 379, 17-29.	3.7	33
115	Analytical Spectroscopy at the Colloquium Spectroscopicum Internationale XXXIII, 7?12 September 2003, Granada, Spain. Analytical and Bioanalytical Chemistry, 2004, 379, 12-14.	3.7	0
116	A radiofrequency glow-discharge-time-of-flight mass spectrometer for direct analysis of glasses. Analytical and Bioanalytical Chemistry, 2004, 379, 658-67.	3.7	23
117	Heavy atom induced room temperature phosphorescence: a tool for the analytical characterization of polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2004, 516, 213-220.	5.4	36
118	Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Analytica Chimica Acta, 2004, 522, 1-8.	5.4	168
119	Flow-through solid-phase energy transfer-room temperature phosphorescence for orthophosphate determinations at trace levels. Talanta, 2004, 62, 827-833.	5.5	14
120	Flow injection determination of nitrite by fluorescence quenching. Talanta, 2004, 62, 991-995.	5.5	24
121	Fluorescence optosensors based on different transducers for the determination of polycyclic aromatic hydrocarbons in water. Analytical and Bioanalytical Chemistry, 2003, 377, 614-623.	3.7	24
122	Energy transfer—room temperature phosphorescence for the optosensing of transition metal ions. Analytica Chimica Acta, 2003, 486, 1-10.	5.4	10
123	Room temperature phosphorimetric determination of cyanide based on triplet state energy transfer. Analytica Chimica Acta, 2003, 491, 27-35.	5.4	15
124	Analytical potential of a glow discharge chamber coupled to a time of flight mass spectrometer for qualitative in-depth profile analysis. Journal of Analytical Atomic Spectrometry, 2003, 18, 612-617.	3.0	17
125	Quantitative depth profile analysis by direct current glow discharge time of flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2003, 18, 864-871.	3.0	22
126	Critical comparison between quadrupole and time-of-flight inductively coupled plasma mass spectrometers for isotope ratio measurements in elemental speciation. Journal of Analytical Atomic Spectrometry, 2002, 17, 950-957.	3.0	40

#	Article	IF	CITATIONS
127	Development of a Prototype Instrument for Multiposition Sensing of Dissolved Oxygen by Using Room-Temperature Phosphorescence Measurements. Applied Spectroscopy, 2002, 56, 947-951.	2.2	4
128	Characterization of a simple glow discharge coupled to a time of flight mass spectrometer for in-depth profile analysis. Journal of Analytical Atomic Spectrometry, 2002, 17, 1126-1131.	3.0	19
129	Further development of a simple glow discharge source for direct solid analysis by on-axis time of flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2002, 17, 786-789.	3.0	23
130	Spectrafluorimetric method for the rapid screening of toxic heavy metals in water samples. Analytica Chimica Acta, 2002, 451, 203-210.	5.4	30
131	Determination of trace levels of mercury in water samples based on room temperature phosphorescence energy transfer. Analytica Chimica Acta, 2002, 455, 179-186.	5.4	31
132	Title is missing!. Journal of Analytical Atomic Spectrometry, 2001, 16, 1253-1258.	3.0	29
133	Determination of lead and mercury in sea water by preconcentration in a flow injection system followed by atomic absorption spectrometry detection. Talanta, 2001, 55, 1071-1078.	5.5	57
134	Room temperature phosphorescence pH optosensor based on energy transfer. Analytica Chimica Acta, 2001, 431, 1-9.	5.4	22
135	Room-temperature phosphorescence fiber-optic instrumentation for simultaneous multiposition analysis of dissolved oxygen. Analytica Chimica Acta, 2001, 429, 55-64.	5.4	12
136	Fluorimetric method for the determination of trace levels of mercury in sea water using 6-mercaptopurine. Analytica Chimica Acta, 2000, 419, 33-40.	5.4	29
137	Air moisture sensing materials based on the room temperature phosphorescence quenching of immobilized mercurochrome. Analytica Chimica Acta, 2000, 407, 61-69.	5.4	33
138	Time-of-flight mass spectrometry as a tool for speciation analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 767-778.	2.9	38
139	Portable Fibre Optic Oxygen Sensor Based on Room-Temperature Phosphor escence Lifetime. Mikrochimica Acta, 2000, 134, 145-152.	5.0	13
140	Rapid simultaneous multielemental speciation by capillary electrophoresis coupled to inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2000, 15, 1063-1067.	3.0	59
141	Flow-through room temperature phosphorescence optosensing for the determination of lead in sea water. Analytica Chimica Acta, 1999, 395, 1-9.	5.4	23
142	Low-level mercury determination with thiamine by fluorescence optosensing. Talanta, 1999, 49, 907-913.	5.5	39
143	Sol–gel immobilized room-temperature phosphorescent metal-chelate as luminescent oxygen sensing material. Analytica Chimica Acta, 1998, 360, 17-26.	5.4	59
144	A critical comparison of different solid supports to develop room-temperature phosphorescence sensing phases of air moisture. Sensors and Actuators B: Chemical, 1997, 38, 103-109.	7.8	23

#	Article	IF	CITATIONS
145	Direct coupling of high-performance liquid chromatography to microwave-induced plasma atomic emission spectrometry via volatile-species generation and its application to mercury and arsenic speciation. Journal of Analytical Atomic Spectrometry, 1995, 10, 1019-1025.	3.0	91
146	Effect of plasma pressure on the determination of mercury by microwave-induced plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 1995, 10, 649-653.	3.0	22
147	A time domain error measure for resampled irregular data. , 0, , .		7