
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/654504/publications.pdf Version: 2024-02-01

ALAN II DHILLIDS

#	Article	IF	CITATIONS
1	Caveats of the internal transcribed spacer region as a barcode to resolve species boundaries in Diaporthe. Fungal Biology, 2022, 126, 54-74.	2.5	5
2	Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity, 2022, 114, 463-490.	12.3	12
3	Two new Morinia species from palms (Arecaceae) in Portugal. Mycological Progress, 2021, 20, 83-94.	1.4	1
4	Three new host records of endophytic Neofusicoccum species reported from Dendrobium orchid . Phytotaxa, 2021, 494, 193-207.	0.3	1
5	Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity, 2021, 108, 1-215.	12.3	48
6	Molecular and Morphological Assessment of Septoria Species Associated with Ornamental Plants in Yunnan Province, China. Journal of Fungi (Basel, Switzerland), 2021, 7, 483.	3.5	0
7	Importance of Molecular Data to Identify Fungal Plant Pathogens and Guidelines for Pathogenicity Testing Based on Koch's Postulates. Pathogens, 2021, 10, 1096.	2.8	26
8	Defining a species in fungal plant pathology: beyond the species level. Fungal Diversity, 2021, 109, 267-282.	12.3	23
9	https://botryosphaeriales.org/, an online platform for up-to-date classification and account of taxa of Botryosphaeriales. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	12
10	Five new species of Neopestalotiopsis associated with diseased Eucalyptus spp. in Portugal. Mycological Progress, 2021, 20, 1441-1456.	1.4	8
11	Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2021, 111, 1-335.	12.3	88
12	Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 604923.	3.9	177
13	Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 2020, 104, 1-266.	12.3	60
14	Diversity, distribution and host association of Botryosphaeriaceae species causing oak decline across different forest ecosystems in Algeria. European Journal of Plant Pathology, 2020, 158, 745-765.	1.7	15
15	Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity, 2020, 102, 1-203.	12.3	93
16	<i>Nigrospora</i> Species Associated with Various Hosts from Shandong Peninsula, China. Mycobiology, 2020, 48, 169-183.	1.7	31
17	Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China. Frontiers in Microbiology, 2020, 11, 609387.	3.5	24
18	Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Diversity, 2020, 105, 17-318.	12.3	70

#	Article	IF	CITATIONS
19	A dynamic portal for a community-driven, continuously updated classification of Fungi and fungus-like organisms: outlineoffungi.org. Mycosphere, 2020, 11, 1514-1526.	6.1	8
20	Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere, 2020, 11, 1553-2107.	6.1	109
21	Outline of Fungi and fungus-like taxa. Mycosphere, 2020, 11, 1060-1456.	6.1	405
22	Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Scientific Reports, 2019, 9, 14355.	3.3	29
23	Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2019, 96, 1-242.	12.3	148
24	One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50 (2019). Fungal Diversity, 2019, 94, 41-129.	12.3	69
25	Families in Botryosphaeriales: a phylogenetic, morphological and evolutionary perspective. Fungal Diversity, 2019, 94, 1-22.	12.3	63
26	One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75 (2019). Fungal Diversity, 2019, 98, 77-160.	12.3	35
27	Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere, 2019, 10, 1-186.	6.1	110
28	Mating type gene analyses in the genus Diplodia: From cryptic sex to cryptic species. Fungal Biology, 2018, 122, 629-638.	2.5	11
29	Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research, 2018, 25, 87-102.	3.4	60
30	Drought × disease interaction in <i>Eucalyptus globulus</i> under <i>Neofusicoccum eucalyptorum</i> infection. Plant Pathology, 2018, 67, 87-96.	2.4	22
31	Tzeananiaceae, a new pleosporalean family associated with Ophiocordyceps macroacicularis fruiting bodies in Taiwan. MycoKeys, 2018, 37, 1-17.	1.9	11
32	Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Diversity, 2018, 93, 1-160.	12.3	125
33	Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota. Mycosphere, 2018, 9, 647-754.	6.1	12
34	Morphological and molecular identification of two novel species of Melanops in China. Mycosphere, 2018, 9, 1187-1196.	6.1	6
35	Ethanol as an antifungal treatment for paper: short-term and long-term effects. Studies in Conservation, 2017, 62, 33-42.	1.1	22
36	Diversity of Auricularia (Auriculariaceae, Auriculariales) in Thailand. Phytotaxa, 2017, 292, 19.	0.3	13

#	Article	IF	CITATIONS
37	Clotrimazole and calcium hydroxide nanoparticles: A low toxicity antifungal alternative for paper conservation. Journal of Cultural Heritage, 2017, 24, 45-52.	3.3	13
38	Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 2017, 83, 1-261.	12.3	180
39	Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity, 2017, 84, 75-99.	12.3	138
40	Antifungal treatment of paper with calcium propionate and parabens: Short-term and long-term effects. International Biodeterioration and Biodegradation, 2017, 120, 203-215.	3.9	20
41	Notes for genera: Ascomycota. Fungal Diversity, 2017, 86, 1-594.	12.3	213
42	Phylogenetic revision of <i>Camarosporium</i> (<i>Pleosporineae</i> , <i>Dothideomycetes</i>) and allied genera. Studies in Mycology, 2017, 87, 207-256.	7.2	65
43	Families of <i>Diaporthales</i> based on morphological and phylogenetic evidence. Studies in Mycology, 2017, 86, 217-296.	7.2	130
44	Microfungi on Tamarix. Fungal Diversity, 2017, 82, 239-306.	12.3	44
45	Mating type genes in the genus Neofusicoccum : Mating strategies and usefulness in species delimitation. Fungal Biology, 2017, 121, 394-404.	2.5	37
46	DISCOMYCETES: the apothecial representatives of the phylum Ascomycota. Fungal Diversity, 2017, 87, 237-298.	12.3	31
47	Molecular characterization and pathogenicity of Diplodia corticola and other Botryosphaeriaceae species associated with canker and dieback of Quercus suber in Algeria. Mycosphere, 2017, 8, 1261-1272.	6.1	28
48	Mycosphere notes 1-50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere, 2017, 8, 697-796.	6.1	73
49	Diaporthe species on Rosaceae with descriptions of D. pyracanthae sp. nov. and D. malorum sp. nov Mycosphere, 2017, 8, 485-511.	6.1	28
50	The current status of species in Diaporthe. Mycosphere, 2017, 8, 1106-1156.	6.1	73
51	Mycosphere Essays 19: Recent advances and future challenges in taxonomy of coelomycetous fungi. Mycosphere, 2017, 8, 934-950.	6.1	5
52	Morphology and Phylogeny of <i>Neoscytalidium orchidacearum</i> sp. nov. (Botryosphaeriaceae). Mycobiology, 2016, 44, 79-84.	1.7	30
53	A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles. Environmental Microbiology, 2016, 18, 4794-4816.	3.8	33
54	Additions to <i>Sporormiaceae</i> : Introducing Two Novel Genera, <i>Sparticola</i> and <i>Forliomyces</i> , from <i>Spartium</i> . Cryptogamie, Mycologie, 2016, 37, 75-97.	1.0	22

ALAN J L PHILLIPS

#	Article	IF	CITATIONS
55	Chaetothyrina mangiferae sp. nov., a new species of Chaetothyrina. Phytotaxa, 2016, 255, 21.	0.3	10
56	Phylogeny, morphology and pathogenicity of Botryosphaeriaceae, Diatrypaceae and Gnomoniaceae associated with branch diseases of hazelnut in Sardinia (Italy). European Journal of Plant Pathology, 2016, 146, 259-279.	1.7	37
57	Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 2016, 78, 1-237.	12.3	239
58	Sexual morph of Seimatosporium cornii found on Cornus sanguinea in Italy. Phytotaxa, 2016, 257, 51.	0.3	8
59	Dictyosporiaceae fam. nov Fungal Diversity, 2016, 80, 457-482.	12.3	44
60	Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity, 2016, 77, 1-316.	12.3	134
61	Phylogeny, distribution and pathogenicity of <i>Lasiodiplodia</i> species associated with dieback of table grape in the main Brazilian exporting region. Plant Pathology, 2016, 65, 92-103.	2.4	40
62	4-MUF-NAG for fungal biomass determination: Scope and limitations in the context of biodeterioration studies. Journal of Cultural Heritage, 2016, 22, 992-998.	3.3	3
63	Families of Sordariomycetes. Fungal Diversity, 2016, 79, 1-317.	12.3	256
64	Diversity and potential impact of Botryosphaeriaceae species associated with Eucalyptus globulus plantations in Portugal. European Journal of Plant Pathology, 2016, 146, 245-257.	1.7	36
65	<i>Quambalaria eucalypti</i> a pathogen of <i>Eucalyptus globulus</i> newly reported in Portugal and in Europe. Forest Pathology, 2016, 46, 67-75.	1.1	11
66	Dothiorella species associated with woody hosts in Italy. Mycosphere, 2016, 7, 51-63.	6.1	16
67	Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & amp; clarifications. Mycosphere, 2016, 7, 1622-1648.	6.1	29
68	Perspectives into the value of genera, families and orders in classification. Mycosphere, 2016, 7, 1649-1668.	6.1	20
69	Mycosphere Essays 9: Defining biotrophs and hemibiotrophs. Mycosphere, 2016, 7, 545-559.	6.1	43
70	Botryosphaeriaceae from palms in Thailand - Barriopsis archontophoenicis sp. nov, from Archontophoenix alexandrae. Mycosphere, 2016, 7, 921-932.	6.1	10
71	Diversity and phylogeny of Neofusicoccum species occurring in forest and urban environments in Portugal. Mycosphere, 2016, 7, 906-920.	6.1	28

72 Sexual morph of Lasiodiplodia pseudotheobromae (Botryosphaeriaceae, Botryosphaeriales,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td

#	Article	IF	CITATIONS
73	Special issue on Botryosphaeriaceae. Mycosphere, 2016, 7, 868-869.	6.1	1
74	Botryosphaeriaceae: Current status of genera and species. Mycosphere, 2016, 7, 1001-1073.	6.1	109
75	Phaeobotryon negundinis sp. nov. (Botryosphaeriales) from Russia. Mycosphere, 2016, 7, 933-941.	6.1	8
76	Mycosphere Essays 5: Is it important to name species of Botryosphaeriaceae?. Mycosphere, 2016, 7, 870-882.	6.1	4
77	Sardiniella urbana gen. et sp. nov., a new member of the Botryosphaeriaceae isolated from declining Celtis australis trees in Sardinian streetscapes. Mycosphere, 2016, 7, 893-905.	6.1	25
78	Botryosphaeriaceae from palms in Thailand II - two new species of Neodeightonia, N. rattanica and N. rattanicola from Calamus (rattan palm). Mycosphere, 2016, 7, 950-961.	6.1	12
79	Mycosphere Essays 14: Assessing the aggressiveness of plant pathogenic Botryosphaeriaceae. Mycosphere, 2016, 7, 883-892.	6.1	26
80	Botryosphaeriaceae species associated with lentisk dieback in Italy and description of Diplodia insularis sp. nov. Mycosphere, 2016, 7, 962-977.	6.1	31
81	Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus, 2015, 6, 507-523.	3.8	99
82	Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers. Journal of Applied Microbiology, 2015, 119, 500-509.	3.1	19
83	<i>Teratosphaeria gauchensis</i> associated with trunk, stem and foliar lesions of <i>Eucalyptus globulus</i> in Portugal. Forest Pathology, 2015, 45, 224-234.	1.1	12
84	The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity, 2015, 74, 3-18.	12.3	471
85	Phylogenetic relationships and morphological reappraisal of Melanommataceae (Pleosporales). Fungal Diversity, 2015, 74, 267-324.	12.3	41
86	Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Diversity, 2015, 71, 201-214.	12.3	81
87	A phylogenetic study of <i>Dothiorella</i> and <i>Spencermartinsia</i> species associated with woody plants in Iran, New Zealand, Portugal and Spain. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2014, 32, 1-12.	4.4	31
88	Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Diversity, 2014, 69, 1-55.	12.3	216
89	The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Diversity, 2014, 67, 143-156.	12.3	55
90	Species of Lasiodiplodia associated with papaya stem-end rot in Brazil. Fungal Diversity, 2014, 67, 127-141.	12.3	86

#	Article	IF	CITATIONS
91	Pests and Diseases in Portuguese Forestry: Current and New Threats. World Forests, 2014, , 117-154.	0.1	12
92	Botryosphaeria, Neofusicoccum, Neoscytalidium and Pseudofusicoccum species associated with mango in Brazil. Fungal Diversity, 2013, 61, 195-208.	12.3	62
93	Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal). International Biodeterioration and Biodegradation, 2013, 84, 322-332.	3.9	42
94	<i>Diplodia quercivora</i> sp. nov.: a new species of <i>Diplodia</i> found on declining <i>Quercus canariensis</i> trees in Tunisia. Mycologia, 2013, 105, 1266-1274.	1.9	48
95	Families of Dothideomycetes. Fungal Diversity, 2013, 63, 1-313.	12.3	509
96	Diversity of Botryosphaeriaceae species associated with conifers in Portugal. European Journal of Plant Pathology, 2013, 135, 791-804.	1.7	29
97	Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology, 2013, 76, 31-49.	7.2	207
98	The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 2013, 76, 51-167.	7.2	676
99	Phylogeny and taxonomy of <i>Botryosphaeria</i> and <i>Neofusicoccum</i> species in Iran, with description of <i>Botryosphaeria scharifii</i> sp. nov Mycologia, 2013, 105, 210-220.	1.9	50
100	Species of Lasiodiplodia associated with mango in Brazil. Fungal Diversity, 2013, 61, 181-193.	12.3	96
101	Resolving the <i>Diplodia</i> complex on apple and other <i>Rosaceae</i> hosts. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2012, 29, 29-38.	4.4	70
102	<i>Plectosphaerella</i> species associated with root and collar rots of horticultural crops in southern Italy. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2012, 28, 34-48.	4.4	120
103	Fungal Planet description sheets: 128–153. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2012, 29, 146-201.	4.4	80
104	Foreword: Integrated plant disease management. European Journal of Plant Pathology, 2012, 133, 1-1.	1.7	3
105	Mycosphaerella and Teratosphaeria species associated with Mycosphaerella Leaf Disease on Eucalyptus globulus in Portugal. Forest Systems, 2012, 21, .	0.3	2
106	Cryphonectria naterciae: A new species in the Cryphonectria–Endothia complex and diagnostic molecular markers based on microsatellite-primed PCR. Fungal Biology, 2011, 115, 852-861.	2.5	25
107	Resolving the <i>Diaporthe</i> species occurring on soybean in Croatia. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2011, 27, 9-19.	4.4	150
108	Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicoccum parvum/N. ribis complex. European Journal of Plant Pathology, 2011, 129, 485-500.	1.7	33

#	Article	IF	CITATIONS
109	Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Diversity, 2010, 44, 107-115.	12.3	89
110	Phylogeny and morphology of four new species of <i>Lasiodiplodia</i> from Iran. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2010, 25, 1-10.	4.4	135
111	Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biology, 2010, 114, 255-270.	2.5	136
112	<l>Barriopsis iraniana</l> and <l>Phaeobotryon cupressi</l> : two new species of the <l>Botryosphaeriaceae</l> from trees in Iran. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2009, 23, 1-8.	4.4	52
113	Mycosphaerella species occurring on Eucalyptus globulus in Portugal. European Journal of Plant Pathology, 2009, 125, 425-433.	1.7	8
114	Antifungal effect of different methyl and propyl paraben mixtures on the treatment of paper biodeterioration. International Biodeterioration and Biodegradation, 2009, 63, 267-272.	3.9	31
115	A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology, 2009, 64, 1-15.	7.2	540
116	Morphology, phylogeny and pathogenicity of <i>Botryosphaeria</i> and <i>Neofusicoccum</i> species associated with drupe rot of olives in southern Italy. Plant Pathology, 2008, 57, 948-956.	2.4	88
117	Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2008, 21, 29-55.	4.4	229
118	First Report of <i>Diplodia seriata</i> Causing Shoot Blight and Cankers of <i>Cotoneaster salicifolius</i> in Bulgaria. Plant Disease, 2008, 92, 976-976.	1.4	4
119	Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Research in Microbiology, 2007, 158, 112-121.	2.1	58
120	First Report of Canker Disease Caused by Botryosphaeria parva on Cork Oak Trees in Italy. Plant Disease, 2007, 91, 324-324.	1.4	20
121	Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology, 2006, 55, 235-253.	7.2	646
122	Phenotypic characterisation of Phaeoacremonium and Phaeomoniella strains isolated from grapevines: enzyme production and virulence of extra-cellular filtrate on grapevine calluses. Scientia Horticulturae, 2006, 107, 123-130.	3.6	38
123	Response of Vitis vinifera L. plants inoculated with Phaeoacremonium angustius and Phaeomoniella chlamydospora to thiabendazole, resveratrol and sodium arsenite. Scientia Horticulturae, 2006, 107, 131-136.	3.6	22
124	<i>Botryosphaeria viticola</i> sp. nov. on grapevines: a new species with a <i>Dothiorella</i> anamorph. Mycologia, 2005, 97, 1111-1121.	1.9	23
125	Two new species of <i>Botryosphaeria</i> with brown, 1-septate ascospores and <i>Dothiorella</i> anamorphs. Mycologia, 2005, 97, 513-529.	1.9	79
126	Evaluation of amplified ribosomal DNA restriction analysis as a method for the identification of Botryosphaeria species. FEMS Microbiology Letters, 2005, 245, 221-229.	1.8	51

ALAN J L PHILLIPS

#	Article	IF	CITATIONS
127	Morphology and phylogeny of Botryosphaeria dothidea causing fruit rot of olives. Mycopathologia, 2005, 159, 433-439.	3.1	52
128	Botryosphaeria viticola sp. nov. on grapevines: a new species with a Dothiorella anamorph. Mycologia, 2005, 97, 1111-1121.	1.9	54
129	Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia, 2005, 97, 513-529.	1.9	136
130	Physiological response of grapevine cultivars and a rootstock to infection with Phaeoacremonium and Phaeomoniella isolates: an in vitro approach using plants and calluses. Scientia Horticulturae, 2005, 103, 187-198.	3.6	43
131	Botryosphaeria corticola, sp. nov. on Quercus Species, with Notes and Description of Botryosphaeria stevensii and Its Anamorph, Diplodia mutila. Mycologia, 2004, 96, 598.	1.9	94
132	Applicability of rep-PCR genomic fingerprinting to molecular discrimination of members of the genera Phaeoacremonium and Phaeomoniella. Plant Pathology, 2004, 53, 629-634.	2.4	20
133	<i>Botryosphaeria corticola,</i> sp. nov. on <i>Quercus</i> species, with notes and description of <i>Botryosphaeria stevensii</i> and its anamorph, <i>Diplodia mutila</i> . Mycologia, 2004, 96, 598-613.	1.9	151
134	Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia, 2004, 96, 598-613.	1.9	35
135	Species of <i>Phomopsis</i> and a <i>Libertella</i> sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia, 2001, 93, 146-167.	1.9	136
136	Species of Phomopsis and a Libertella sp. Occurring on Grapevines with Specific Reference to South Africa: Morphological, Cultural, Molecular and Pathological Characterization. Mycologia, 2001, 93, 146.	1.9	67
137	The Relationship between Diaporthe perjuncta and Phomopsis viticola on Grapevines. Mycologia, 1999, 91, 1001.	1.9	16
138	Variation in pathogenicity among isolates of Elsinoe phaseoli from Phaseolus species. Annals of Applied Biology, 1996, 128, 209-218.	2.5	2
139	Phytophthora and Pythium Associated with Feeder Root Rot of Citrus in the Transvaal Province of South Africa. Journal of Phytopathology, 1995, 143, 37-41.	1.0	11
140	Occurrence of scab ofPhaseolus vulgariscaused byElsinoë phaseoliin South Africa. Plant Pathology, 1994, 43, 417-419.	2.4	4
141	Influence of fluctuating temperatures and interrupted periods of plant surface wetness on infection of bean leaves by ascospores of Sclerotinia sclerotiorum. Annals of Applied Biology, 1994, 124, 413-427.	2.5	19
142	A comparison of methods for inoculating bean plants with Elsinoë phaseoli and some factors affecting infection. Annals of Applied Biology, 1994, 125, 97-104.	2.5	9
143	New records of Cylindrocladium and Cylindrocladiella spp. in South Africa. Plant Pathology, 1993, 42, 302-305.	2.4	10
144	The use of protoplasts for the preparation of homokaryons from heterokaryotic isolates of Rhizoctonia solani. Mycological Research, 1993, 97, 456-460.	2.5	16

#	Article	IF	CITATIONS
145	Effects of Cultural Conditions on Vesicle and Conidium Morphology in Species of Cylindrocladium and Cylindrocladiella. Mycologia, 1992, 84, 497.	1.9	34
146	A comparison of dust and acetone infusion applications of tolclofos-methyl to bean seeds for the control of Rhizoctonia solani. Plant Pathology, 1992, 41, 35-40.	2.4	1
147	Variation in virulence to dry beans, soybeans and maize among isolates of Rhizoctonia solani from beans. Annals of Applied Biology, 1991, 118, 9-17.	2.5	8
148	The Genera <i>Cylindrocladium</i> and <i>Cylindrocladiella</i> in South Africa, with Special Reference to Forest Nurseries. South African Forestry Journal, 1991, 157, 69-85.	0.1	36
149	The effects of soil solarization on sclerotial populations of Sclerotinia sclerotiorum. Plant Pathology, 1990, 39, 38-43.	2.4	25
150	Rhizoctonia leaf spot of tobacco in South Africa. Plant Pathology, 1990, 39, 206-207.	2.4	25
151	Control of seed-borne Sclerotinia sclerotiorum by fungicidal treatment of sunflower seed. Plant Pathology, 1988, 37, 202-205.	2.4	12
152	Root rot of cabbage caused by Phytophthora drechsleri. Plant Pathology, 1988, 37, 297-299.	2.4	5
153	Factors Affecting the Parasitic Activity of <i>Gliocladium virens</i> on Sclerotia of <i>Sclerotinia sclerotiorum</i> and a Note on its Host Range. Journal of Phytopathology, 1986, 116, 212-220.	1.0	25
154	Carpogenic Germination of Sclerotia of Sclerotinia sclerotiorum after Periods of Conditioning in Soil. Journal of Phytopathology, 1986, 116, 247-258.	1.0	16
155	Structural Aspects of the Parasitism of Sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary by Coniothyrium minitans Campb Journal of Phytopathology, 1983, 107, 193-203.	1.0	27