
Johanna TrägÃ¥rdh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6541007/publications.pdf Version: 2024-02-01

ΙΟΗΛΝΝΑ ΤΡΑ̈́σΑ̈́γρημ

#	Article	lF	CITATIONS
1	Endoscopic Imaging Using a Multimode Optical Fibre Calibrated with Multiple Internal References. Photonics, 2022, 9, 37.	2.0	6
2	Suppression of the non-linear background in a multimode fibre CARS endoscope. Biomedical Optics Express, 2022, 13, 862.	2.9	3
3	CARS Microscopy Through a Multimode Fiber Probe with Reduced Four-Wave Mixing Background. , 2022, , .		Ο
4	Polarization-resolved second-harmonic generation imaging through a multimode fiber. Optica, 2021, 8, 1065.	9.3	17
5	Excitation Polarization Resolved Second Harmonic Generation Microscopy Through a Multimode Optical Fiber. , 2021, , .		0
6	Suppressing the Non-linear Fiber Background in Multimode Fiber Endoscopy. , 2021, , .		0
7	Non-linear label-free imaging through a multimode graded index optical fibre. EPJ Web of Conferences, 2020, 238, 04006.	0.3	0
8	Coherent anti-Stokes Raman scattering microscopy through a multimode fiber endoscope. , 2020, , .		1
9	Label-free non-linear imaging through a multimode fiberendoscope. , 2020, , .		0
10	Wavelength dependent characterization of a multimode fibre endoscope. Optics Express, 2019, 27, 28239.	3.4	15
11	Label-free CARS microscopy through a multimode fiber endoscope. Optics Express, 2019, 27, 30055.	3.4	54
12	Towards focusing broad band light through a multimode fiber endoscope. , 2019, , .		1
13	Multimode fiber transmission matrix obtained with internal references. , 2019, , .		1
14	A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. ELife, 2016, 5, .	6.0	115
15	Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching. PLoS ONE, 2016, 11, e0147115.	2.5	16
16	Two-Color, Two-Photon Imaging at Long Excitation Wavelengths Using a Diamond Raman Laser. Microscopy and Microanalysis, 2016, 22, 803-807.	0.4	6
17	Ultrafast second-Stokes diamond Raman laser. Optics Express, 2016, 24, 8149.	3.4	10
18	A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope. Journal of Microscopy, 2015, 259, 66-73.	1.8	17

Johanna TrÃ**g**Ã¥rdh

#	Article	IF	CITATIONS
19	Exploration of the twoâ€photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser. Journal of Microscopy, 2015, 259, 210-218.	1.8	21
20	Label-free imaging of thick tissue at 1550  nm using a femtosecond optical parametric generator. Optics Letters, 2015, 40, 3484.	3.3	6
21	Self-focusing of Optical Beams Below the Diffraction Limit. , 2014, , .		0
22	Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning. Nature Communications, 2014, 5, 3221.	12.8	54
23	GaAs/AlGaAs heterostructure nanowires studied by cathodoluminescence. Nano Research, 2014, 7, 473-490.	10.4	34
24	Combining near-field scanning optical microscopy with spectral interferometry for local characterization of the optical electric field in photonic structures. Optics Express, 2013, 21, 16629.	3.4	5
25	Local Characterization of Photonic Structures by Near-field Scanning Optical Microscopy and Spectral Interferometry. , 2013, , .		0
26	Balanced detection for interferometry with a noisy source. Review of Scientific Instruments, 2012, 83, 063705.	1.3	7
27	Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy. Nano Research, 2011, 4, 159-163.	10.4	41
28	Low-temperature cathodoluminescence studies of GaAs nanowires in the SEM. Journal of Physics: Conference Series, 2010, 241, 012085.	0.4	2
29	In situ etching for total control over axial and radial nanowire growth. Nano Research, 2010, 3, 264-270.	10.4	135
30	Nano-Schottky contacts realized by bottom-up technique. , 2010, , .		0
31	Precursor evaluation for <i>in situ</i> InP nanowire doping. Nanotechnology, 2008, 19, 445602.	2.6	92
32	Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 2008, 19, 305201.	2.6	228
33	Optical Properties of Rotationally Twinned InP Nanowire Heterostructures. Nano Letters, 2008, 8, 836-841.	9.1	303
34	TEM Correlation between the Structural and Optical Properties Of Rotationally Twinned InP Nanowires. Microscopy and Microanalysis, 2008, 14, 414-415.	0.4	0
35	Measurements of the band gap of wurtzite InAs1â~'xPx nanowires using photocurrent spectroscopy. Journal of Applied Physics, 2007, 101, 123701.	2.5	76
36	Infrared Photodetectors in Heterostructure Nanowires. Nano Letters, 2006, 6, 229-232.	9.1	204

#	Article	IF	CITATIONS
37	Investigations of InAs surface dots on InP. Applied Physics Letters, 2006, 89, 033111.	3.3	5
38	Growth and Optical Properties of Strained GaAsâ^'GaxIn1-xP Coreâ^'Shell Nanowires. Nano Letters, 2005, 5, 1943-1947.	9.1	245
39	Temperature effect on single chain MEH-PPV spectra. Chemical Physics Letters, 2004, 388, 40-45.	2.6	34