Leila Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6540639/publications.pdf

Version: 2024-02-01

71102 85541 5,449 93 41 71 citations h-index g-index papers 97 97 97 4679 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. Journal of Climate, 2004, 17, 88-108.	3.2	602
2	Recent developments on the South American monsoon system. International Journal of Climatology, 2012, 32, 1-21.	3.5	375
3	Extreme Precipitation Events in Southeastern South America and Large-Scale Convective Patterns in the South Atlantic Convergence Zone. Journal of Climate, 2002, 15, 2377-2394.	3.2	270
4	Active and Break Phases in the South American Monsoon System. Journal of Climate, 2002, 15, 905-914.	3.2	188
5	Subseasonal Variations of Rainfall in South America in the Vicinity of the Low-Level Jet East of the Andes and Comparison to Those in the South Atlantic Convergence Zone. Journal of Climate, 2004, 17, 3829-3842.	3.2	173
6	An Observed Trend in Central South American Precipitation. Journal of Climate, 2004, 17, 4357-4367.	3.2	158
7	Opposite Phases of the Antarctic Oscillation and Relationships with Intraseasonal to Interannual Activity in the Tropics during the Austral Summer. Journal of Climate, 2005, 18, 702-718.	3.2	156
8	Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Climate Dynamics, 2015, 44, 441-455.	3.8	156
9	Seasonality of African Precipitation from 1996 to 2009. Journal of Climate, 2012, 25, 4304-4322.	3.2	152
10	Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 2016, 136, 555-570.	3.6	147
11	The South American Lowâ€Level Jet: A New Climatology, Variability, and Changes. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1200-1218.	3.3	115
12	Onset and End of the Rainy Season in South America in Observations and the ECHAM 4.5 Atmospheric General Circulation Model. Journal of Climate, 2007, 20, 2037-2050.	3.2	114
13	A Satellite Method to Identify Structural Properties of Mesoscale Convective Systems Based on the Maximum Spatial Correlation Tracking Technique (MASCOTTE). Journal of Applied Meteorology and Climatology, 2001, 40, 1683-1701.	1.7	103
14	Interannual Variability of Daily Extreme Precipitation Events in the State of São Paulo, Brazil. Journal of Climate, 2001, 14, 208-218.	3.2	100
15	Climatology of Tropical Intraseasonal Convective Anomalies: 1979–2002. Journal of Climate, 2004, 17, 523-539.	3.2	97
16	Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 2013, 116, 705-722.	3.6	94
17	Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Climate Dynamics, 2014, 42, 1553-1568.	3.8	93
18	A comprehensive analysis of trends in extreme precipitation over southeastern coast of Brazil. International Journal of Climatology, 2017, 37, 2269-2279.	3.5	88

#	Article	IF	CITATIONS
19	Climate Change in the South American Monsoon System: Present Climate and CMIP5 Projections. Journal of Climate, 2013, 26, 6660-6678.	3.2	86
20	Intraseasonal and Interannual Variability of Extreme Dry and Wet Events over Southeastern South America and the Subtropical Atlantic during Austral Summer. Journal of Climate, 2009, 22, 1682-1699.	3.2	82
21	IPCC global coupled model simulations of the South America monsoon system. Climate Dynamics, 2009, 33, 893-916.	3.8	75
22	Moisture transport and intraseasonal variability in the South America monsoon system. Climate Dynamics, 2011, 36, 1865-1880.	3.8	75
23	A Statistical Forecast Model of Tropical Intraseasonal Convective Anomalies. Journal of Climate, 2004, 17, 2078-2095.	3.2	73
24	Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach. Theoretical and Applied Climatology, 2016, 125, 27-44.	2.8	73
25	Changes in the Activity of the Madden–Julian Oscillation during 1958–2004. Journal of Climate, 2006, 19, 6353-6370.	3.2	72
26	The South American Monsoon System and the 1970s climate transition. International Journal of Climatology, 2011, 31, 1248-1256.	3.5	68
27	Warming and drying over the central Himalaya caused by an amplification of local mountain circulation. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	63
28	Large-scale index for South America Monsoon (LISAM). Atmospheric Science Letters, 2007, 8, 51-57.	1.9	62
29	The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation. Climate Dynamics, 2017, 49, 2179-2204.	3.8	62
30	The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	61
31	Characteristics of Mesoscale Convective Systems over China and Its Vicinity Using Geostationary Satellite FY2. Journal of Climate, 2015, 28, 4890-4907.	3.2	58
32	Current and Future Variations of the Monsoons of the Americas in a Warming Climate. Current Climate Change Reports, 2019, 5, 125-144.	8.6	58
33	Spatial–Intensity Variations in Extreme Precipitation in the Contiguous United States and the Madden–Julian Oscillation. Journal of Climate, 2012, 25, 4898-4913.	3.2	57
34	Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. Journal of Geophysical Research, 2002, 107, LBA 9-1.	3.3	56
35	Origin of Convectively Coupled Kelvin Waves over South America. Journal of Climate, 2009, 22, 300-315.	3.2	56
36	The effects of air pollution and meteorological parameters on respiratory morbidity during the summer in SÃ \pm o Paulo City. Environment International, 2005, 31, 343-349.	10.0	53

#	Article	IF	CITATIONS
37	The poleward shift of South Atlantic Convergence Zone in recent decades. Climate Dynamics, 2019, 52, 2545-2563.	3.8	51
38	Variability of South American Convective Cloud Systems and Tropospheric Circulation during January–March 1998 and 1999. Monthly Weather Review, 2003, 131, 961-973.	1.4	48
39	Influence of the Madden–Julian Oscillation on Forecasts of Extreme Precipitation in the Contiguous United States. Monthly Weather Review, 2011, 139, 332-350.	1.4	46
40	Precipitation Characteristics of the South American Monsoon System Derived from Multiple Datasets. Journal of Climate, 2012, 25, 4600-4620.	3.2	46
41	The influence of tropical forcing on extreme winter precipitation in the western Himalaya. Climate Dynamics, 2017, 48, 1213-1232.	3.8	46
42	A new climatology for Southern Hemisphere blockings in the winter and the combined effect of ENSO and SAM phases. International Journal of Climatology, 2014, 34, 1676-1692.	3.5	40
43	Will global warming modify the activity of the Madden–Julian Oscillation?. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 544-552.	2.7	38
44	Assessing precipitation trends in the Americas with historical data: A review. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e627.	8.1	36
45	The South Atlantic dipole and variations in the characteristics of the South American Monsoon in the WCRP-CMIP3 multi-model simulations. Climate Dynamics, 2011, 36, 2091-2102.	3.8	35
46	Forecast Skill of Synoptic Conditions Associated with Santa Ana Winds in Southern California. Monthly Weather Review, 2010, 138, 4528-4541.	1.4	34
47	Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations. Climate Dynamics, 2019, 52, 159-180.	3.8	33
48	Effects of topographic smoothing on the simulation of winter precipitation in High Mountain Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1456-1474.	3.3	32
49	Stochastic simulations of the Madden–Julian oscillation activity. Climate Dynamics, 2011, 36, 229-246.	3.8	31
50	Trends and variability in extremes of precipitation in Curitiba–ÂSouthern Brazil. International Journal of Climatology, 2017, 37, 1250-1264.	3.5	27
51	The Madden–Julian Oscillation and the Relative Value of Deterministic Forecasts of Extreme Precipitation in the Contiguous United States. Journal of Climate, 2011, 24, 2421-2428.	3.2	26
52	Mechanisms Associated with Large Daily Rainfall Events in Northeast Brazil. Journal of Climate, 2011, 24, 376-396.	3.2	26
53	Evaluating the Ability of FARSITE to Simulate Wildfires Influenced by Extreme, Downslope Winds in Santa Barbara, California. Fire, 2020, 3, 29.	2.8	26
54	Anti-persistence in the global temperature anomaly field. Nonlinear Processes in Geophysics, 2007, 14, 723-733.	1.3	25

#	Article	IF	CITATIONS
55	Sensitivity to Madden–Julian Oscillation variations on heavy precipitation over the contiguous United States. Atmospheric Research, 2014, 147-148, 10-26.	4.1	25
56	Spatial and Temporal Patterns of Cloud Cover and Fog Inundation in Coastal California: Ecological Implications. Earth Interactions, 2016, 20, 1-19.	1.5	23
57	A new assessment in total and extreme rainfall trends over central and southern Peruvian Andes during 1965–2010. International Journal of Climatology, 2018, 38, e998.	3.5	23
58	CMIP5 Simulations of Low-Level Tropospheric Temperature and Moisture over the Tropical Americas. Journal of Climate, 2013, 26, 6257-6286.	3.2	22
59	WRF simulation of downslope wind events in coastal Santa Barbara County. Atmospheric Research, 2017, 191, 57-73.	4.1	21
60	Introduction to special section on Recent Advances in the Study of Optical Variability in the Nearâ \in Surface and Upper Ocean. Journal of Geophysical Research, 2012, 117, .	3.3	19
61	Intraseasonal variability of the Atlantic Intertropical Convergence Zone during austral summer and winter. Climate Dynamics, 2016, 47, 1717-1733.	3.8	19
62	The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere, 2020, 11, 174.	2.3	19
63	Impacts of the Maddenâ€Julian oscillation on intraseasonal precipitation over Northeast Brazil. International Journal of Climatology, 2017, 37, 1859-1884.	3. 5	18
64	Forecast Skill of the South American Monsoon System. Journal of Climate, 2012, 25, 1883-1889.	3.2	16
65	The Madden–Julian Oscillation and Boreal Winter Forecast Skill: An Analysis of NCEP CFSv2 Reforecasts. Journal of Climate, 2015, 28, 6297-6307.	3.2	16
66	Multifractal properties of evolving convective systems over tropical South America. Geophysical Research Letters, 2002, 29, 33-1-33-4.	4.0	15
67	Intraseasonal-to-Interannual Variability of the Indian Monsoon Identified with the Large-Scale Index for the Indian Monsoon System (LIMS). Journal of Climate, 2016, 29, 2941-2962.	3.2	15
68	Characteristics of southern California atmospheric rivers. Theoretical and Applied Climatology, 2018, 132, 965-981.	2.8	15
69	Complexity and predictability of daily precipitation in a semi-arid region: an application to Cear \tilde{A}_i , Brazil. Nonlinear Processes in Geophysics, 2006, 13, 651-659.	1.3	13
70	Megafires in a Warming World: What Wildfire Risk Factors Led to California's Largest Recorded Wildfire. Fire, 2022, 5, 16.	2.8	13
71	An Application of Fractal Box Dimension to the Recognition of Mesoscale Cloud Patterns in Infrared Satellite Images. Journal of Applied Meteorology and Climatology, 1998, 37, 1265-1282.	1.7	12
72	Simulating Sundowner Winds in Coastal Santa Barbara: Model Validation and Sensitivity. Atmosphere, 2019, 10, 155.	2.3	12

#	Article	IF	CITATIONS
73	The Sundowner Winds Experiment (SWEX) Pilot Study: Understanding Downslope Windstorms in the Santa Ynez Mountains, Santa Barbara, California. Monthly Weather Review, 2020, 148, 1519-1539.	1.4	12
74	Spatial random downscaling of rainfall signals in Andean heterogeneous terrain. Nonlinear Processes in Geophysics, 2015, 22, 383-402.	1.3	11
75	Simulating the influence of the South Atlantic dipole on the South Atlantic convergence zone during neutral ENSO. Theoretical and Applied Climatology, 2014, 118, 251-269.	2.8	10
76	Detection and attribution of precipitation trends associated with the poleward shift of the South Atlantic Convergence Zone using CMIP5 simulations. International Journal of Climatology, 2021, 41, 3085-3106.	3.5	9
77	Winter and spring atmospheric rivers in High Mountain Asia: climatology, dynamics, and variability. Climate Dynamics, 2022, 58, 2309-2331.	3.8	9
78	Climatology of Sundowner winds in coastal Santa Barbara, California, based on 30Âyr high resolution WRF downscaling. Atmospheric Research, 2021, 249, 105305.	4.1	8
79	Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America?. Atmosphere, 2022, 13, 231.	2.3	8
80	Causality of Biodiversity Loss: Climate, Vegetation, and Urbanization in China and America. Sensors, 2019, 19, 4499.	3.8	7
81	Coastal Vulnerability under Extreme Weather. Applied Spatial Analysis and Policy, 2021, 14, 497-523.	2.0	5
82	Late Holocene Precipitation Fluctuations in South America Triggered by Variability of the North Atlantic Overturning Circulation. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004223.	2.9	5
83	The combined influence of ENSO and PDO on the spring UTLS ozone variability in South America. Climate Dynamics, 2020, 55, 1539-1562.	3.8	4
84	Brief Communication: An electrifying atmospheric river – understanding the thunderstorm event in Santa Barbara County during March 2019. Natural Hazards and Earth System Sciences, 2020, 20, 1931-1940.	3.6	4
85	The South American Monsoon System. World Scientific Series on Asia-Pacific Weather and Climate, 2017, , 25-33.	0.2	3
86	The Effect of Upstream Orography on the Onset of Sundowner Winds in Coastal Santa Barbara, CA. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033791.	3.3	3
87	The Madden–Julian Oscillation and the Relative Value of Deterministic Forecasts of Extreme Precipitation in the Contiguous United States. Journal of Climate, 2011, 24, 2421-2428.	3.2	3
88	Evaluating the influence of deep convection on tropopause thermodynamics and lower stratospheric water vapor: A RELAMPAGO case study using the WRF model. Atmospheric Research, 2022, 267, 105986.	4.1	3
89	Simulating Potential Impacts of Fuel Treatments on Fire Behavior and Evacuation Time of the 2018 Camp Fire in Northern California. Fire, 2022, 5, 37.	2.8	3
90	Mesoscale and High-Impact Weather in the South American Monsoon. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 151-160.	0.2	2

#	Article	IF	CITATIONS
91	Extreme winds and fire weather in coastal Santa Barbara County, CA: An observational analysis. International Journal of Climatology, 0, , .	3.5	2
92	Spatial Extents of Tropical Droughts During El Niñ0 in Current and Future Climate in Observations, Reanalysis, and CMIP5 Models. Geophysical Research Letters, 2021, 48, e2021GL093701.	4.0	2
93	Climate Variability and Extreme Weather in High Mountain Asia: Observation and Modelling. , 2020, , 109-117.		1