Frances C Sussmilch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6539178/publications.pdf

Version: 2024-02-01

27 1,247 19 26
papers citations h-index g-index

29 29 29 1712 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The genetic architecture of flowering time changes in pea from wild to crop. Journal of Experimental Botany, 2022, 73, 3978-3990.	4.8	7
2	The evolving role of abscisic acid in cell function and plant development over geological time. Seminars in Cell and Developmental Biology, 2021, 109, 39-45.	5.0	13
3	How to Grow a Tree: Plant Voltage-Dependent Cation Channels in the Spotlight of Evolution. Trends in Plant Science, 2021, 26, 41-52.	8.8	24
4	Stomata: the holey grail of plant evolution. American Journal of Botany, 2021, 108, 366-371.	1.7	20
5	Continental-scale distribution and diversity of <i>Ceratobasidium </i> orchid mycorrhizal fungi in Australia. Annals of Botany, 2021, 128, 329-343.	2.9	13
6	From reproduction to production, stomata are the master regulators. Plant Journal, 2020, 101, 756-767.	5.7	38
7	Independent genetic control of drought resistance, recovery, and growth of <i>Eucalyptus globulus</i> seedlings. Plant, Cell and Environment, 2020, 43, 103-115.	5.7	10
8	Specific mycorrhizal associations involving the same fungal taxa in common and threatened Caladenia (Orchidaceae): implications for conservation. Annals of Botany, 2020, 126, 943-955.	2.9	18
9	Acquiring Control: The Evolution of Stomatal Signalling Pathways. Trends in Plant Science, 2019, 24, 342-351.	8.8	56
10	On the origins of osmotically driven stomatal movements. New Phytologist, 2019, 222, 84-90.	7.3	27
11	Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. Journal of Experimental Botany, 2018, 69, 1261-1267.	4.8	77
12	What are the evolutionary origins of stomatal responses to abscisic acid in land plants?. Journal of Integrative Plant Biology, 2017, 59, 240-260.	8. 5	66
13	Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany, 2017, 68, 2913-2918.	4.8	92
14	Identification of the SHORT VEGETATIVE PHASE (SVP)-like MADS-box genes in pea (Pisum sativum L.). Plant Gene, 2017, 12, 72-79.	2.3	2
15	Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time. Plant Signaling and Behavior, 2017, 12, e1365210.	2.4	23
16	Linking Auxin with Photosynthetic Rate via Leaf Venation. Plant Physiology, 2017, 175, 351-360.	4.8	52
17	Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity. Plants, 2017, 6, 54.	3 . 5	28
18	Identification of <i>LATE BLOOMER2</i> as a <i>CYCLING DOF FACTOR</i> Homolog Reveals Conserved and Divergent Features of the Flowering Response to Photoperiod in Pea. Plant Cell, 2016, 28, 2545-2559.	6.6	26

#	ARTICLE	IF	CITATION
19	Abscisic acid controlled sex before transpiration in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12862-12867.	7.1	82
20	Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. Plant, Cell and Environment, 2016, 39, 485-491.	5.7	134
21	Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. AoB PLANTS, 2015, 7, plv091.	2.3	29
22	Pea <i>VEGETATIVE2</i> Is an <i>FD</i> Homolog That Is Essential for Flowering and Compound Inflorescence Development. Plant Cell, 2015, 27, 1046-1060.	6.6	46
23	The Pea Photoperiod Response Gene <i>STERILE NODES</i> Is an Ortholog of <i>LUX ARRHYTHMO</i> Â Â Â. Plant Physiology, 2014, 165, 648-657.	4.8	48
24	Isolation and Forward Genetic Analysis of Developmental Genes in Pea. Methods in Molecular Biology, 2013, 1069, 147-161.	0.9	0
25	VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications, 2012, 3, 797.	12.8	85
26	The Pea <i>GIGAS</i> Gene Is a <i>FLOWERING LOCUS T</i> Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod Â. Plant Cell, 2011, 23, 147-161.	6.6	176
27	Update on the genetic control of flowering in garden pea. Journal of Experimental Botany, 2009, 60, 2493-2499.	4.8	54