Hong Li ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/6539165/publications.pdf Version: 2024-02-01 | 500 | 58,461 | 122 | 221 | |----------|----------------|--------------|----------------------| | papers | citations | h-index | g-index | | 512 | 512 | 512 | 36257 citing authors | | all docs | docs citations | times ranked | | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 1 | Localizedâ€domains staging structure and evolution in lithiated graphite. , 2023, 5, . | | 21 | | 2 | LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. Science China Materials, 2022, 65, 69-77. | 3.5 | 13 | | 3 | Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. National Science Review, 2022, 9, nwab146. | 4.6 | 27 | | 4 | High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendriteâ€Free Liquid Lithium Anode. Advanced Functional Materials, 2022, 32, 2105776. | 7.8 | 40 | | 5 | Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications. Nanostructure Science and Technology, 2022, , 133-164. | 0.1 | 2 | | 6 | In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy, 2022, 91, 106679. | 8.2 | 62 | | 7 | Interfacial layer rich in organic fluoride enabling stable cycling of high-voltage PEO-based solid-state lithium batteries. Electrochimica Acta, 2022, 404, 139617. | 2.6 | 5 | | 8 | SnF ₂ â€Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie, 2022, 134, . | 1.6 | 6 | | 9 | SnF ₂ â€Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie - International Edition, 2022, 61, . | 7.2 | 42 | | 10 | Probing lattice defects in crystalline battery cathode using hard X-ray nanoprobe with data-driven modeling. Energy Storage Materials, 2022, 45, 647-655. | 9.5 | 7 | | 11 | New insights into the mechanism of cation migration induced by cation–anion dynamic coupling in superionic conductors. Journal of Materials Chemistry A, 2022, 10, 3093-3101. | 5.2 | 11 | | 12 | All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772. | 8.8 | 7 | | 13 | Solid Polymer Electrolyte Reinforced with a Li _{1.3} Al _{O.3} Ti _{1.7} (PO ₄) ₃ -Coated Separator for All-Solid-State Lithium Batteries. ACS Applied Materials & D. Samp; Interfaces, 2022, 14, 1195-1202. | 4.0 | 33 | | 14 | Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. Journal of Materials Chemistry A, 2022, 10, 4517-4532. | 5.2 | 75 | | 15 | Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95, 106983. | 8.2 | 83 | | 16 | Solid state ionics – Selected topics and new directions. Progress in Materials Science, 2022, 126, 100921. | 16.0 | 39 | | 17 | Local Ordering for Decoupling Bonding of Mobile Ions and Polymer Matrixes by Zwitterionic Solid Polymer Electrolytes. ACS Central Science, 2022, 8, 153-155. | 5.3 | 0 | | 18 | Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224. | 11.5 | 44 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Accelerated strategy for fast ion conductor materials screening and optimal doping scheme exploration. Journal of Materiomics, 2022, 8, 1038-1047. | 2.8 | 1 | | 20 | Controlling Li deposition below the interface. EScience, 2022, 2, 47-78. | 25.0 | 110 | | 21 | Screening LiMn ₂ O ₄ Surface Modification Schemes under Theoretical Guidance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10353-10362. | 4.0 | 14 | | 22 | lonic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion. Inorganics, 2022, 10, 45. | 1.2 | 2 | | 23 | Anomalous Thermal Decomposition Behavior of Polycrystalline
LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in PEOâ€Based Solid Polymer
Electrolyte. Advanced Functional Materials, 2022, 32, . | 7.8 | 19 | | 24 | Solid-state lithium batteries: Safety and prospects. EScience, 2022, 2, 138-163. | 25.0 | 190 | | 25 | Charging sustainable batteries. Nature Sustainability, 2022, 5, 176-178. | 11.5 | 70 | | 26 | A high-performance MnO2 cathode doped with group â§ metal for aqueous Zn-ion batteries: In-situ X-Ray diffraction study on Zn2+ storage mechanism. Journal of Power Sources, 2022, 527, 231198. | 4.0 | 14 | | 27 | Raising the Intrinsic Safety of Layered Oxide Cathodes by Surface Re‣ithiation with LLZTO Garnetâ€ T ype
Solid Electrolytes. Advanced Materials, 2022, 34, e2200655. | 11.1 | 30 | | 28 | The influence of electrolyte concentration and solvent on operational voltage of Li/CF primary batteries elucidated by Nernst Equation. Journal of Power Sources, 2022, 527, 231193. | 4.0 | 26 | | 29 | Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries. Journal of Power Sources, 2022, 527, 231178. | 4.0 | 15 | | 30 | A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries.
Advanced Materials, 2022, 34, e2110323. | 11.1 | 46 | | 31 | Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm. InformaÄnÃ-
Materiály, 2022, 4, . | 8.5 | 33 | | 32 | Exploring magnetron sputtering preparation of high-quality LiNi0.5Mn1.5O4 films by controlling the oxygen atmosphere at moderate temperature. Thin Solid Films, 2022, 750, 139174. | 0.8 | 0 | | 33 | Waterâ€Stable Sulfide Solid Electrolyte Membranes Directly Applicable in Allâ€Solidâ€State Batteries Enabled by Superhydrophobic Li ⁺ â€Conducting Protection Layer. Advanced Energy Materials, 2022, 12, . | 10.2 | 62 | | 34 | Organic–Inorganic Composite Electrolytes Optimized with Fluoroethylene Carbonate Additive for Quasi-Solid-State Lithium-Metal Batteries. ACS Applied Materials & 1, 2022, 14, 20962-20971. | 4.0 | 19 | | 35 | Progress in solvent-free dry-film technology for batteries and supercapacitors. Materials Today, 2022, 55, 92-109. | 8.3 | 63 | | 36 | Progress in lithium thioborate superionic conductors. Journal of Materials Research, 2022, 37, 3269-3282. | 1.2 | 2 | | # | Article | IF | Citations | |----|---|------|-----------| | 37 | Interfacial engineering to achieve an energy density of over 200 Wh kgâ~1 in sodium batteries. Nature Energy, 2022, 7, 511-519. | 19.8 | 130 | | 38 | Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. EScience, 2022, 2, 537-545. | 25.0 | 57 | | 39 | Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes. Energy Storage Materials, 2022, 50, 598-605. | 9.5 | 22 | | 40 | Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. Nano Energy, 2022, 100, 107528. | 8.2 | 38 | | 41 | Longâ€Life Lithiumâ€Metal Allâ€Solidâ€State Batteries and Stable Li Plating Enabled by InÂSitu Formation of Li ₃ PS ₄ in the SEI Layer. Advanced Materials, 2022, 34, . | 11.1 | 66 | | 42 | High adherent polyacrylonitrile as a potential binder for high-capacity Fe7S8 cathode. Applied Physics Letters, 2022, 120, . | 1.5 | 3 | | 43 | Electroactive-catalytic conductive framework for aluminum-sulfur batteries. Energy Storage Materials, 2022, 51, 266-272. | 9.5 | 7 | | 44 | The Role of Electron Localization in Covalency and Electrochemical Properties of Lithiumâ€ion Battery Cathode Materials. Advanced Functional Materials, 2021, 31, 2001633. | 7.8 | 21 | | 45 | Rational Design of Mixed Electronicâ€lonic Conducting Tiâ€Doping
Li ₇ La ₃ Zr ₂ O ₁₂ for Lithium Dendrites Suppression.
Advanced Functional Materials, 2021, 31, 2001918. | 7.8 | 57 | | 46 | A Multilayer Ceramic Electrolyte for Allâ€Solidâ€State Li Batteries. Angewandte Chemie - International Edition, 2021, 60, 3781-3790. | 7.2 | 71 | | 47 | Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes. Rare Metals, 2021, 40, 1357-1365. | 3.6 | 27 | | 48 | A Multilayer Ceramic Electrolyte for Allâ€Solidâ€State Li Batteries. Angewandte Chemie, 2021, 133, 3825-3834. | 1.6 | 13 | | 49 | Deciphering the Oxygen Absorption Preâ€edge: A Caveat on its Application for Probing Oxygen Redox
Reactions in Batteries. Energy and Environmental Materials, 2021, 4, 246-254. | 7.3 | 56 | | 50 | Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709. | 10.2 | 119 | | 51 | Probing the Energy Storage Mechanism of Quasiâ€Metallic Na in Hard Carbon for Sodiumâ€Ion Batteries.
Advanced Energy Materials, 2021, 11, 2003854. | 10.2 | 104 | | 52 | Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. Joule, 2021, 5, 720-736. | 11.7 | 56 | | 53 | Cycling mechanism of Li2MnO3: Li–CO2Âbatteries and commonality on oxygen redox in cathode materials. Joule, 2021, 5, 975-997. | 11.7 | 88 | | 54 | Enhancing the Thermal Stability of
NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18743-18749. | 4.0 | 29 | | # | Article | IF | CITATIONS | |----|--|------------------|-----------| | 55 | First-Principles Simulations for the Surface Evolution and Mn Dissolution in the Fully Delithiated Spinel LiMn ₂ O ₄ . Langmuir, 2021, 37, 5252-5259. | 1.6 | 17 | | 56 | Synergistic Effect of Temperature and Electrolyte Concentration on Solidâ€State Interphase for Highâ€Performance Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100010. | 2.8 | 2 | | 57 | The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie, 2021, 133, 13123-13130. | 1.6 | 4 | | 58 | The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie - International Edition, 2021, 60, 13013-13020. | 7.2 | 25 | | 59 | Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives*. Chinese Physics B, 2021, 30, 068202. | 0.7 | 1 | | 60 | Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Materials, 2021, 37, 87-93. | 9.5 | 31 | | 61 | Enabling the thermal stability of solid electrolyte interphase in Liâ€ion battery. InformaÄnÃ-Materiály,
2021, 3, 648-661. | 8.5 | 70 | | 62 | Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723. | 11.1 | 26 | | 63 | Oxygen anionic redox activated high-energy cathodes: Status and prospects. ETransportation, 2021, 8, 100118. | 6.8 | 34 | | 64 | Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021, 2021, . | 4.7 | 57 | | 65 | Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie -
International Edition, 2021, 60, 17547-17555. | 7.2 | 72 | | 66 | Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries. Energy Storage Materials, 2021, 38, 482-488. | 9.5 | 52 | | 67 | Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696. | 1.6 | 13 | | 68 | Progress in thermal stability of <scp>allâ€solidâ€stateâ€Liâ€ionâ€batteries</scp> . InformaÄnÃ-Materiály, 2021, 827-853. | 3 _{8.5} | 126 | | 69 | Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274. | 3.6 | 14 | | 70 | Fast Li Plating Behavior Probed by X-ray Computed Tomography. Nano Letters, 2021, 21, 5254-5261. | 4.5 | 19 | | 71 | A Reflection on Lithiumâ€ion Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062. | 2.8 | 7 | | 72 | Fluorinated Polyâ€oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for Allâ€Solidâ€State Li/NMC811 Batteries. Angewandte Chemie - International Edition, 2021, 60, 18335-18343. | 7.2 | 53 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Superior Allâ€Solidâ€State Batteries Enabled by a Gasâ€Phaseâ€Synthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. Advanced Materials, 2021, 33, e2100921. | 11.1 | 110 | | 74 | Fluorinated Polyâ€oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for Allâ€Solidâ€State Li/NMC811 Batteries. Angewandte Chemie, 2021, 133, 18483-18491. | 1.6 | 13 | | 75 | Front Cover Image. InformaÄnÃ-Materiály, 2021, 3, . | 8.5 | 1 | | 76 | Controllable ionic self-assembl of polyoxometalate and melamine for synthesis of nanostructured Ag. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126732. | 2.3 | 2 | | 77 | Reaction Mechanisms of Ta-Substituted Cubic
Li ₇ La ₃ Zr ₂ O ₁₂ with Solvents During Storage. ACS
Applied Materials & During Storage. ACS | 4.0 | 14 | | 78 | Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034. | 11.1 | 39 | | 79 | High-performance Li-air battery after limiting inter-electrode crosstalk. Energy Storage Materials, 2021, 39, 225-231. | 9.5 | 5 | | 80 | Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, . | 4.7 | 63 | | 81 | Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 3719-3724. | 8.8 | 55 | | 82 | Bi-carbon armor design with CVD carbon and compact graphene network to promote the practical use of microparticulate Si anodes in lithium-ion batteries. Chinese Science Bulletin, 2021, 66, 3367-3369. | 0.4 | 1 | | 83 | Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. Advances in Colloid and Interface Science, 2021, 295, 102489. | 7.0 | 27 | | 84 | TiO2 (B) anode for high-voltage aqueous Li-ion batteries. Energy Storage Materials, 2021, 42, 438-444. | 9.5 | 28 | | 85 | Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced
Materials, 2021, 33, e2005781. | 11.1 | 12 | | 86 | Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069. | 6.6 | 57 | | 87 | 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy, 2021, 90, 106589. | 8.2 | 53 | | 88 | Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeS (1Ââ‰ÂxÂâ‰Â1.14) cathodes. Energy Storage Materials, 2021, 43, 579-584. | 9.5 | 27 | | 89 | In Situ Visualization of Li-Whisker with Grating-Interferometry-Based Tricontrast X-ray
Microtomography. , 2021, 3, 1786-1792. | | 8 | | 90 | Interplay between solid-electrolyte interphase and (in)active LixSi inÂsilicon anode. Cell Reports Physical Science, 2021, 2, 100668. | 2.8 | 42 | | # | Article | IF | Citations | |-----|--|--------------|-----------| | 91 | Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review. Energy Storage Materials, 2020, 24, 75-84. | 9.5 | 199 | | 92 | Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides. Energy Storage Materials, 2020, 24, 384-393. | 9.5 | 101 | | 93 | Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2319-2326. | 4.0 | 186 | | 94 | lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110. | 7.3 | 72 | | 95 | The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminumâ€lon Batteries. ChemSusChem, 2020, 13, 732-740. | 3.6 | 93 | | 96 | Batteries with high theoretical energy densities. Energy Storage Materials, 2020, 26, 46-55. | 9.5 | 152 | | 97 | New insight of stabilizing electrode/electrolyte interphase: Regulating the specific adsorption of the inner Helmholtz plane. Journal of Energy Chemistry, 2020, 45, 126-127. | 7.1 | 5 | | 98 | Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization. Energy Storage Materials, 2020, 26, 577-584. | 9.5 | 56 | | 99 | Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews, 2020, 120, 6820-6877. | 23.0 | 891 | | 100 | Neutron-based characterization techniques for lithium-ion battery research. Chinese Physics B, 2020, 29, 018201. | 0.7 | 31 | | 101 | Highâ€Voltage Aqueous Naâ€Ion Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€inâ€Salt Electrolyte. Advar
Materials, 2020, 32, e1904427. | nced
11.1 | 221 | | 102 | Insights of the anionic redox in P2–Na0.67Ni0.33Mn0.67O2. Nano Energy, 2020, 78, 105285. | 8.2 | 49 | | 103 | pH-Responsive dopamine-based nanoparticles assembled <i>via</i> Schiff base bonds for synergistic anticancer therapy. Chemical Communications, 2020, 56, 13347-13350. | 2.2 | 18 | | 104 | Local spring effect in titanium-based layered oxides. Energy and Environmental Science, 2020, 13, 4371-4380. | 15.6 | 13 | | 105 | Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy, 2020, 78, 105101. | 8.2 | 51 | | 106 | High-rate cathode CrSSe based on anion reactions for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 25739-25745. | 5.2 | 17 | | 107 | Battery prelithiation enabled by lithium fixation on cathode. Journal of Power Sources, 2020, 480, 229109. | 4.0 | 22 | | 108 | Hierarchical Defect Engineering for LiCoO2 through Low-Solubility Trace Element Doping. CheM, 2020, 6, 2759-2769. | 5.8 | 74 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 109 | 4.2Ââ€⟨V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Materials, 2020, 32, 191-198. | 9.5 | 77 | | 110 | Interface Concentratedâ€Confinement Suppressing Cathode Dissolution in
Waterâ€inâ€Salt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665. | 10.2 | 70 | | 111 | Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858. | 4.5 | 25 | | 112 | Interface engineering renders high-rate high-capacity lithium storage in black phosphorous composite anodes with excellent cycling durability. Science China Chemistry, 2020, 63, 1734-1736. | 4.2 | 4 | | 113 | Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843. | 5.2 | 12 | | 114 | Structure Design of Cathode Electrodes for Solidâ€State Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042. | 6.9 | 73 | | 115 | Unraveling the Reaction Mechanism of FeS ₂ as a Li-lon Battery Cathode. ACS Applied Materials & Discrete Substitution (12), 44850-44857. | 4.0 | 71 | | 116 | Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711. | 6.0 | 616 | | 117 | Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995. | 8.8 | 72 | | 118 | The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium. Joule, 2020, 4, 812-821. | 11.7 | 197 | | 119 | Delayed Phase Transition and Improved Cycling/Thermal Stability by Spinel
LiNi _{0.5} Mn _{1.5} O ₄ Modification for LiCoO ₂ Cathode at
High Voltages. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27339-27349. | 4.0 | 41 | | 120 | Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator*. Chinese Physics B, 2020, 29, 088201. | 0.7 | 6 | | 121 | Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813. | | 19 | | 122 | An In Situ Formed Surface Coating Layer Enabling LiCoO ₂ with Stable 4.6 V Highâ€Voltage Cycle Performances. Advanced Energy Materials, 2020, 10, 2001413. | 10.2 | 201 | | 123 | Na ₃ Zr ₂ Si ₂ PO ₁₂ : A Stable Na ⁺ -lon Solid Electrolyte for Solid-State Batteries. ACS Applied Energy Materials, 2020, 3, 7427-7437. | 2.5 | 77 | | 124 | Realizing long-term cycling stability and superior rate performance of 4.5ÂV–LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. Journal of Power Sources, 2020, 470, 228423. | 4.0 | 57 | | 125 | Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study*. Chinese Physics B, 2020, 29, 048203. | 0.7 | 5 | | 126 | Mn Ion Dissolution Mechanism for Lithium-Ion Battery with LiMn ₂ O ₄ Cathode: ⟨i⟩In Situ⟨/i⟩ Ultraviolet–Visible Spectroscopy and ⟨i⟩Ab Initio⟨/i⟩ Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2020, 11, 3051-3057. | 2.1 | 60 | | # | Article | IF | Citations | |-----|---|------|-----------| | 127 | Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu nanowires for excellent Li storage performance. Science Bulletin, 2020, 65, 1907-1915. | 4.3 | 50 | | 128 | Improving LiNi0.9Co0.08Mn0.02O2's cyclic stability via abating mechanical damages. Energy Storage Materials, 2020, 28, 1-9. | 9.5 | 44 | | 129 | Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832. | 8.8 | 192 | | 130 | High-throughput computational discovery of K ₂ CdO ₂ as an ion conductor for solid-state potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5157-5162. | 5.2 | 23 | | 131 | Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell. Nano Energy, 2020, 70, 104552. | 8.2 | 41 | | 132 | Enabling Stable Cycling of 4.2 V Highâ€Voltage Allâ€Solidâ€State Batteries with PEOâ€Based Solid Electrolyte. Advanced Functional Materials, 2020, 30, 1909392. | 7.8 | 204 | | 133 | Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources, 2020, 459, 228073. | 4.0 | 109 | | 134 | A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy, 2020, 73, 104786. | 8.2 | 120 | | 135 | Mobile Ions in Composite Solids. Chemical Reviews, 2020, 120, 4169-4221. | 23.0 | 193 | | 136 | Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. Journal of Energy Chemistry, 2020, 51, 72-80. | 7.1 | 56 | | 137 | A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636. | 2.2 | 43 | | 138 | Structural and mechanistic revelations on high capacity cation-disordered Li-rich oxides for rechargeable Li-ion batteries. Energy Storage Materials, 2019, 16, 354-363. | 9.5 | 94 | | 139 | The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001. | 1.3 | 236 | | 140 | High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Materials, 2019, 17, 266-274. | 9.5 | 114 | | 141 | Practical evaluation of energy densities for sulfide solid-state batteries. ETransportation, 2019, 1, 100010. | 6.8 | 114 | | 142 | In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 2019, 63, 103895. | 8.2 | 109 | | 143 | Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal. Chinese Physics B, 2019, 28, 078202. | 0.7 | 1 | | 144 | Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) < sub > 6 < /sub > Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & Distribution (2019), 11, 41356-41362. | 4.0 | 93 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 145 | Correlated Migration Invokes Higher Na ⁺ â€lon Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373. | 10.2 | 162 | | 146 | A dual-phase Li–Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance. Journal of Materials Chemistry A, 2019, 7, 22377-22384. | 5.2 | 42 | | 147 | Li-free Cathode Materials for High Energy Density Lithium Batteries. Joule, 2019, 3, 2086-2102. | 11.7 | 239 | | 148 | Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2. Journal of Materials Science and Technology, 2019, 35, 1250-1254. | 5.6 | 20 | | 149 | Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie - International Edition, 2019, 58, 4323-4327. | 7.2 | 114 | | 150 | Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€ion Batteries. Angewandte Chemie, 2019, 131, 4405-4409. | 1.6 | 36 | | 151 | Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithiumâ€Rich Cathode Oxides. Angewandte Chemie, 2019, 131, 4367-4371. | 1.6 | 13 | | 152 | Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 4361-4365. | 7.2 | 171 | | 153 | Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials*. Chinese Physics B, 2019, 28, 068201. | 0.7 | 6 | | 154 | Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603. | 19.8 | 572 | | 155 | In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657. | 8.8 | 93 | | 156 | Improved electrochemical performance of Li(Ni _{0.6} Co _{0.2} Mn _{0.2})O ₂ at high charging cut-off voltage with Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃ surface coating*. Chinese Physics B, 2019, 28, 068202. | 0.7 | 16 | | 157 | Safe Lithiumâ€Metal Anodes for Liâ^'O ₂ Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. Batteries and Supercaps, 2019, 2, 638-658. | 2.4 | 67 | | 158 | Electrochemical and optoelectric behavior of Al-doped ZnO films as transparent anode for Li-ion batteries. Materials Today Communications, 2019, 19, 471-475. | 0.9 | 10 | | 159 | Research and development of advanced battery materials in China. Energy Storage Materials, 2019, 23, 144-153. | 9.5 | 168 | | 160 | Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503. | 19.8 | 630 | | 161 | Beyond imaging: Applications of atomic force microscopy for the study of Lithium-ion batteries. Ultramicroscopy, 2019, 204, 34-48. | 0.8 | 39 | | 162 | Practical Evaluation of Li-Ion Batteries. Joule, 2019, 3, 911-914. | 11.7 | 278 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 163 | The Ab Initio Calculations on the Areal Specific Resistance of Liâ€Metal/Li ₇ La ₃ Zr ₂ O ₁₂ Interphase. Advanced Theory and Simulations, 2019, 2, 1900028. | 1.3 | 25 | | 164 | <i>In situ</i> formation of a bifunctional
interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy and Environmental Science, 2019, 12, 1404-1412. | 15.6 | 176 | | 165 | Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation. Journal of Materials Chemistry A, 2019, 7, 15113-15122. | 5.2 | 41 | | 166 | Lithium metal batteries capable of stable operation at elevated temperature. Energy Storage Materials, 2019, 23, 646-652. | 9.5 | 87 | | 167 | WO3 nanocrystal prepared by self-assembly of phosphotungstic acid and dopamine for photocatalytic degradation of Congo red. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 147-151. | 2.3 | 23 | | 168 | Exploring reaction dynamics in lithium–sulfur batteries by time-resolved <i>operando</i> sulfur K-edge X-ray absorption spectroscopy. Chemical Communications, 2019, 55, 4993-4996. | 2.2 | 9 | | 169 | High Rate Li-Ion Batteries with Cation-Disordered Cathodes. Joule, 2019, 3, 1064-1079. | 11.7 | 12 | | 170 | Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chemical Communications, 2019, 55, 15057-15060. | 2.2 | 79 | | 171 | Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition. Joule, 2019, 3, 503-517. | 11.7 | 262 | | 172 | Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nature Communications, 2019, 10, 73. | 5.8 | 291 | | 173 | Li-ion battery material under high pressure: amorphization and enhanced conductivity of Li4Ti5O12.
National Science Review, 2019, 6, 239-246. | 4.6 | 49 | | 174 | Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. Journal of Power Sources, 2019, 409, 24-30. | 4.0 | 203 | | 175 | Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium–Sulfur
Batteries. Advanced Functional Materials, 2018, 28, 1707543. | 7.8 | 81 | | 176 | Core–Shell Fe _{1–<i>x</i>} S@Na _{2.9} PS _{3.95} Se _{0.05} Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. ACS Nano, 2018, 12, 2809-2817. | 7.3 | 68 | | 177 | Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. Journal of Power Sources, 2018, 382, 176-178. | 4.0 | 184 | | 178 | Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Materials, 2018, 14, 1-7. | 9.5 | 307 | | 179 | Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. Journal of Power Sources, 2018, 388, 65-70. | 4.0 | 139 | | 180 | Enhanced ionic conductivity in LAGP/LATP composite electrolyte. Chinese Physics B, 2018, 27, 038201. | 0.7 | 18 | | # | Article | IF | Citations | |-----|--|------|-----------| | 181 | Recent developments in dopamine-based materials for cancer diagnosis and therapy. Advances in Colloid and Interface Science, 2018, 252, 1-20. | 7.0 | 53 | | 182 | Recent advances in self-assembly of spin crossover materials and their applications. Current Opinion in Colloid and Interface Science, 2018, 35, 9-16. | 3.4 | 28 | | 183 | Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries. ACS Applied Materials & Diterfaces, 2018, 10, 2185-2190. | 4.0 | 54 | | 184 | TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 2018, 12, 216-222. | 9.5 | 129 | | 185 | Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. Nano Energy, 2018, 45, 463-470. | 8.2 | 81 | | 186 | Biphenyl-lithium-TEGDME solution as anolyte for high energy density non-aqueous redox flow lithium battery. Journal of Energy Chemistry, 2018, 27, 1362-1368. | 7.1 | 24 | | 187 | Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li
Batteries. ACS Energy Letters, 2018, 3, 1212-1218. | 8.8 | 321 | | 188 | Nanoscaled Na ₃ PS ₄ Solid Electrolyte for All-Solid-State FeS ₂ /Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. ACS Applied Materials & Diterraces, 2018, 10, 12300-12304. | 4.0 | 64 | | 189 | Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj
Computational Materials, 2018, 4, . | 3.5 | 961 | | 190 | A facile electrode preparation method for accurate electrochemical measurements of double-side-coated electrode from commercial Li-ion batteries. Journal of Power Sources, 2018, 384, 172-177. | 4.0 | 6 | | 191 | The effects of oxygen in spinel oxide Li1+xTi2â^'xO4â^'δ thin films. Scientific Reports, 2018, 8, 3995. | 1.6 | 14 | | 192 | Application of Li ₂ S to compensate for loss of active lithium in a Si–C anode. Journal of Materials Chemistry A, 2018, 6, 6206-6211. | 5.2 | 37 | | 193 | Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode. Joule, 2018, 2, 125-140. | 11.7 | 311 | | 194 | Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. Green Energy and Environment, 2018, 3, 63-70. | 4.7 | 20 | | 195 | Organic-inorganic hybrid based on co-assembly of polyoxometalate and dopamine for synthesis of nanostructured Ag. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 513-518. | 2.3 | 12 | | 196 | Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018, 10, 16-23. | 9.5 | 174 | | 197 | Synchrotron Radiation Nanoscale X-ray Imaging Technology And Scientific Big Data Mining Assist Energy Materials Research. Microscopy and Microanalysis, 2018, 24, 542-543. | 0.2 | 0 | | 198 | Discovery and design of lithium battery materials via high-throughput modeling. Chinese Physics B, 2018, 27, 128801. | 0.7 | 2 | | # | Article | IF | Citations | |-----|---|------|-----------| | 199 | Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. Frontiers in Chemistry, 2018, 6, 616. | 1.8 | 175 | | 200 | An Armored Mixed Conductor Interphase on a Dendriteâ€Free Lithiumâ€Metal Anode. Advanced Materials, 2018, 30, e1804461. | 11.1 | 338 | | 201 | Mechanism Study on the Interfacial Stability of a Lithium Garnet-Type Oxide Electrolyte against Cathode Materials. ACS Applied Energy Materials, 2018, 1, 5968-5976. | 2.5 | 72 | | 202 | Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289. | 6.6 | 163 | | 203 | Lithium–Sulfur Batteries: Coâ€Existence of Challenges and Opportunities. Advanced Functional Materials, 2018, 28, 1804589. | 7.8 | 49 | | 204 | Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 2259-2266. | 8.8 | 124 | | 205 | Size effect of Si particles on the electrochemical performances of Si/C composite anodes. Chinese Physics B, 2018, 27, 088201. | 0.7 | 9 | | 206 | Unusual Activation of Cation Disordering by Li/Fe Rearrangement in Triplite LiFeSO ₄ F. Advanced Energy Materials, 2018, 8, 1800298. | 10.2 | 6 | | 207 | Tuning hybrid liquid/solid electrolytes by lowering Li salt concentration for lithium batteries.
Chinese Physics B, 2018, 27, 068201. | 0.7 | 0 | | 208 | A high-performance rechargeable Li–O ₂ battery with quasi-solid-state electrolyte.
Chinese Physics B, 2018, 27, 078201. | 0.7 | 14 | | 209 | A multiphysics model that can capture crack patterns in Si thin films based on their microstructure. Journal of Power Sources, 2018, 400, 383-391. | 4.0 | 25 | | 210 | Preâ€Oxidationâ€Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Advanced Energy Materials, 2018, 8, 1800108. | 10.2 | 179 | | 211 | Improved electrochemical performances of high voltage LiCoO ₂ with tungsten doping. Chinese Physics B, 2018, 27, 088202. | 0.7 | 12 | | 212 | Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341. | 5.8 | 60 | | 213 | New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976. | 15.6 | 894 | | 214 | Exploring PVFM-Based Janus Membrane-Supporting Gel Polymer Electrolyte for Highly Durable Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 22237-22247. | 4.0 | 26 | | 215 | Novel Concentrated Li[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4282-4289. | 4.0 | 62 | | 216 | A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Scientific Reports, 2017, 7, 41217. | 1.6 | 60 | | # | Article | IF | CITATIONS | |-----
---|------|-----------| | 217 | In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277. | 6.6 | 142 | | 218 | Structural stability and Li-ion transport property of LiFePO4 under high-pressure. Solid State Ionics, 2017, 301, 133-137. | 1.3 | 25 | | 219 | Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis. Journal of Materiomics, 2017, 3, 178-183. | 2.8 | 29 | | 220 | Anisotropic electron-phonon coupling in the spinel oxide superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LiT</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> . | 1.1 | 14 | | 221 | Physical Review B, 2017, 95, . A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629. | 5.8 | 71 | | 222 | Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. Annual Review of Materials Research, 2017, 47, 175-198. | 4.3 | 23 | | 223 | Forty years of research on solid metallic lithium batteries: an interview with Liquan Chen. National Science Review, 2017, 4, 106-110. | 4.6 | 4 | | 224 | In situ Visualization of State-of-Charge Heterogeneity within a LiCoO ₂ Particle that Evolves upon Cycling at Different Rates. ACS Energy Letters, 2017, 2, 1240-1245. | 8.8 | 159 | | 225 | Decomposing lithium carbonate with a mobile catalyst. Nano Energy, 2017, 36, 390-397. | 8.2 | 60 | | 226 | Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes. Chemistry of Materials, 2017, 29, 4682-4689. | 3.2 | 189 | | 227 | A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743. | 5.2 | 76 | | 228 | The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. Journal of Materials Chemistry A, 2017, 5, 9339-9349. | 5.2 | 44 | | 229 | Novel Methods for Sodiumâ€lon Battery Materials. Small Methods, 2017, 1, 1600063. | 4.6 | 84 | | 230 | A Well-Defined Silicon Nanocone–Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Definition Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Definition Structure for Demonstrating Exclusive Influences of Carbon Coating Structure for Demonstrating Exclusive Influences of Carbon Coating Structure for Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Demonstrating Exclusive Influences of Carbon Coating On Silicon Anode of Carbon Coating On Silicon Carbon C | 4.0 | 29 | | 231 | Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Materials, 2017, 7, 130-151. | 9.5 | 469 | | 232 | High-capacity lithium-rich cathode oxides with multivalent cationic and anionic redox reactions for lithium ion batteries. Science China Chemistry, 2017, 60, 1483-1493. | 4.2 | 26 | | 233 | First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M = Li, Na) materials for rechargeable batteries. Nano Energy, 2017, 41, 626-633. | 8.2 | 67 | | 234 | Atomicâ€Scale Monitoring of Electrode Materials in Lithiumâ€Ion Batteries using In Situ Transmission Electron Microscopy. Advanced Energy Materials, 2017, 7, 1700709. | 10.2 | 53 | | # | Article | IF | Citations | |-----|---|------|-----------| | 235 | Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in Li ₂ Ru _{0.5} Mn _{0.5} O ₃ Investigated in a Wide Voltage Window. Chemistry of Materials, 2017, 29, 9053-9065. | 3.2 | 40 | | 236 | Al ₂ O ₃ surface coating on LiCoO ₂ through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. Journal of Materials Chemistry A, 2017, 5, 24361-24370. | 5.2 | 127 | | 237 | Gas treatment protection of metallic lithium anode. Chinese Physics B, 2017, 26, 088202. | 0.7 | 3 | | 238 | Data mining-aided materials discovery and optimization. Journal of Materiomics, 2017, 3, 191-201. | 2.8 | 65 | | 239 | A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries. Chinese Physics B, 2017, 26, 068201. | 0.7 | 10 | | 240 | Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. Nano Letters, 2017, 17, 7782-7788. | 4.5 | 42 | | 241 | Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. Journal of Power Sources, 2017, 372, 270-275. | 4.0 | 74 | | 242 | Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries. Chinese Physics B, 2017, 26, 078201. | 0.7 | 11 | | 243 | Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. Physical Review Letters, 2017, 118, 195901. | 2.9 | 58 | | 244 | A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196. | 10.2 | 231 | | 245 | Confirming reversible Al $3+$ storage mechanism through intercalation of Al $3+$ into V 2 O 5 nanowires in a rechargeable aluminum battery. Energy Storage Materials, 2017, 6 , $9-17$. | 9.5 | 241 | | 246 | Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology. Nanoscale, 2017, 9, 17241-17247. | 2.8 | 14 | | 247 | Improved Cycling Stability of Lithiumâ€Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3, 531-536. | 1.7 | 67 | | 248 | Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion.
Angewandte Chemie - International Edition, 2016, 55, 2521-2525. | 7.2 | 411 | | 249 | Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in \hat{l}^2 -Li ₃ PS ₄ electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 21269-21277. | 1.3 | 66 | | 250 | Forming solid electrolyte interphase <i>in situ</i> in an ionic conducting Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ -polypropylene (PP) based separator for Li-ion batteries. Chinese Physics B, 2016, 25, 078204. | 0.7 | 25 | | 251 | Brief overview of electrochemical potential in lithium ion batteries. Chinese Physics B, 2016, 25, 018210. | 0.7 | 66 | | 252 | Novel 1.5 V
anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147. | 5.2 | 35 | | # | Article | IF | Citations | |-----|---|------|-----------| | 253 | Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28, 447-454. | 8.2 | 651 | | 254 | Si micropyramid patterned anodes that can suppress fracture and solid electrolyte interface formation during electrochemical cycling. Journal of Power Sources, 2016, 329, 372-378. | 4.0 | 9 | | 255 | Explore the Effects of Microstructural Defects on Voltage Fade of Li- and Mn-Rich Cathodes. Nano Letters, 2016, 16, 5999-6007. | 4.5 | 64 | | 256 | Novel Li[(CF ₃ SO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. ACS Applied Materials & Diterfaces, 2016, 8, 29705-29712. | 4.0 | 87 | | 257 | A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016, 4, 15823-15828. | 5.2 | 152 | | 258 | Amorphous Li ₂ O ₂ : Chemical Synthesis and Electrochemical Properties. Angewandte Chemie - International Edition, 2016, 55, 10717-10721. | 7.2 | 135 | | 259 | Highâ€Rate Charging Induced Intermediate Phases and Structural Changes of Layerâ€Structured Cathode for Lithiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600597. | 10.2 | 110 | | 260 | Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodium″on Batteries. ChemElectroChem, 2016, 3, 1741-1745. | 1.7 | 76 | | 261 | Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy, 2016, 27, 313-319. | 8.2 | 186 | | 262 | Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197. | 9.5 | 239 | | 263 | Structural integrityâ€"Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy, 2016, 28, 164-171. | 8.2 | 44 | | 264 | Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32631-32636. | 4.0 | 71 | | 265 | Amorphous Li ₂ O ₂ : Chemical Synthesis and Electrochemical Properties. Angewandte Chemie, 2016, 128, 10875-10879. | 1.6 | 37 | | 266 | Phase Separation of Li ₂ S/S at Nanoscale during Electrochemical Lithiation of the Solidâ€State Lithium–Sulfur Battery Using In Situ TEM. Advanced Energy Materials, 2016, 6, 1600806. | 10.2 | 69 | | 267 | Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. Chinese Physics B, 2016, 25, 078203. | 0.7 | 26 | | 268 | A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052. | 5.2 | 246 | | 269 | Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20138-20146. | 4.0 | 197 | | 270 | High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-7154. | 4.5 | 309 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 271 | Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries. Journal of the Electrochemical Society, 2016, 163, A1776-A1783. | 1.3 | 40 | | 272 | Single Lithiumâ€lon Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie, 2016, 128, 2567-2571. | 1.6 | 26 | | 273 | Lithium-ion transport in inorganic solid state electrolyte. Chinese Physics B, 2016, 25, 018211. | 0.7 | 66 | | 274 | Synthesis and ionic transport mechanisms of α-LiAlO2. Solid State Ionics, 2016, 286, 122-134. | 1.3 | 33 | | 275 | Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Advances, 2016, 6, 32454-32461. | 1.7 | 90 | | 276 | Mixed-Phase TiO2 Nanomaterials as Efficient Photocatalysts. Nanoscience and Technology, 2016, , 423-460. | 1.5 | 11 | | 277 | A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries.
Journal of Materials Chemistry A, 2016, 4, 96-104. | 5.2 | 322 | | 278 | Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Materials, 2016, 2, 139-145. | 9.5 | 274 | | 279 | Transport of External Lithium Along Phase Boundary in LiF-Ti Nanocomposite Thin Films. Acta Chimica Slovenica, 2016, 63, 560-568. | 0.2 | 0 | | 280 | Airâ€Stable Copperâ€Based
P2â€Na _{7/9} Cu _{2/9} Fe _{1/9} Mn _{2/3} O ₂ as a New
Positive Electrode Material for Sodiumâ€ion Batteries. Advanced Science, 2015, 2, 1500031. | 5.6 | 287 | | 281 | High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific Reports, 2015, 5, 14227. | 1.6 | 117 | | 282 | Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082. | 10.2 | 532 | | 283 | Prototype Sodiumâ€lon Batteries Using an Airâ€Stable and Co/Niâ€Free O3â€Layered Metal Oxide Cathode.
Advanced Materials, 2015, 27, 6928-6933. | 11.1 | 504 | | 284 | A Novel High Capacity Positive Electrode Material with Tunnelâ€Type Structure for Aqueous Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501005. | 10.2 | 161 | | 285 | Feâ€Based Tunnelâ€Type Na _{0.61} [Mn _{0.27} Fe _{0.34} Ti _{0.39}]O ₂ Designed by a New Strategy as a Cathode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501156. | 10.2 | 122 | | 286 | Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions. Journal of Power Sources, 2015, 273, 1218-1225. | 4.0 | 45 | | 287 | Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Cu 3 Si nanowires. Journal of Power Sources, 2015, 281, 455-460. | 4.0 | 22 | | 288 | New Insight into the Atomic-Scale Bulk and Surface Structure Evolution of Li ₄ Ti ₅ O ₁₂ Anode. Journal of the American Chemical Society, 2015, 137, 1581-1586. | 6.6 | 106 | | # | Article | IF | Citations | |-----|---|------|-----------| | 289 | Atomicâ€Scale Structure Evolution in a Quasiâ€Equilibrated Electrochemical Process of Electrode Materials for Rechargeable Batteries. Advanced Materials, 2015, 27, 2134-2149. | 11.1 | 63 | | 290 | Novel Largeâ€Scale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1500046. | 10.2 | 96 | | 291 | Layered and Spinel Structural Cathodes. Green Energy and Technology, 2015, , 67-92. | 0.4 | 1 | | 292 | Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Research, 2015, 8, 2654-2662. | 5.8 | 109 | | 293 | Probing Reversible Multielectron Transfer and Structure Evolution of Li _{1.2} Cr _{0.4} Mn _{0.4} O ₂ Cathode Material for Li-Ion Batteries in a Voltage Range of 1.0–4.8 V. Chemistry of Materials, 2015, 27, 5238-5252. | 3.2 | 57 | | 294 | A spray drying approach for the synthesis of a Na ₂ CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13193-13197. | 5.2 | 75 | | 295 | Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries.
Nature Communications, 2015, 6, 6401. | 5.8 | 316 | | 296 | Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale, 2015, 7, 7651-7658. | 2.8 | 43 | | 297 | Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. Scientific Reports, 2015, 5, 8810. | 1.6 | 42 | | 298 | Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330. | 4.7 | 170 | | 299 | Doping the Li ₄ Ti ₅ O ₁₂ lattice with extra-large anions. Materials Express, 2015, 5, 457-462. | 0.2 | 12 | | 300 | Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. Journal of Materiomics, 2015, 1, 325-332. | 2.8 | 50 | | 301 | Reviewâ€"Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next
Generation Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2509-A2528. | 1.3 | 289 | | 302 | Instability of lithium bis(fluorosulfonyl)imide (LiFSI)–potassium bis(fluorosulfonyl)imide (KFSI) system with LiCoO 2 at high voltage. Chinese Physics B, 2015, 24, 078201. | 0.7 | 11 | | 303 | A long-life Na–air battery based on a soluble Nal catalyst.
Chemical Communications, 2015, 51, 2324-2327. | 2.2 | 53 | | 304 | Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77. | 5.2 | 432 | | 305 | Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664. | 10.2 | 32 | | 306 | Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading. Journal of Power Sources, 2015, 273, 1120-1126. | 4.0 | 115 | | # | Article | IF | Citations | |-----|--|------|-----------| | 307 | A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Materials, 2014, 6, e120-e120. | 3.8 | 130 | | 308 | Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. Faraday Discussions, 2014, 176, 109-124. | 1.6 | 45 | | 309 | Sizeâ€Dependent Staging and Phase Transition in LiFePO ₄ /FePO ₄ . Advanced Functional Materials, 2014, 24, 312-318. | 7.8 | 48 | | 310 | Molten salt of lithium bis(fluorosulfonyl)imide (LiFSI)-potassium bis(fluorosulfonyl)imide (KFSI) as electrolyte for the natural graphite/LiFePO4 lithium-ion cell. Electrochimica Acta, 2014, 135, 217-223. | 2.6 | 24 | | 311 | Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. Electrochemistry Communications, 2014, 44, 70-73. | 2.3 | 13 | | 312 | Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochimica Acta, 2014, 133, 529-538. | 2.6 | 273 | | 313 | Atomic Structure and Kinetics of NASICON
Na _x V ₂ (PO ₄) ₃ Cathode for Sodiumâ€lon Batteries.
Advanced Functional Materials, 2014, 24, 4265-4272. | 7.8 | 323 | | 314 | Understanding the Rate Capability of Highâ€Energyâ€Density Liâ€Rich Layered Li _{1.2} Ni _{0.15} Co _{0.1} Mn _{0.55} O ₂ Cathode Materials. Advanced Energy Materials, 2014, 4, 1300950. | 10.2 | 480 | | 315 | Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as Highâ€Performance Anodes of Lithium Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 5165-5169. | 7.2 | 175 | | 316 | Selfâ€Assembly of Hierarchical Nanostructures from Dopamine and Polyoxometalate for Oral Drug Delivery. Chemistry - A European Journal, 2014, 20, 499-504. | 1.7 | 73 | | 317 | 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 13229-13238. | 1.3 | 162 | | 318 | Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range. Solid State Ionics, 2014, 268, 110-116. | 1.3 | 53 | | 319 | Nanotube Li ₂ MoO ₄ : a novel and high-capacity material as a lithium-ion battery anode. Nanoscale, 2014, 6, 13660-13667. | 2.8 | 64 | | 320 | Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS – Understanding the Li Storage Mechanism. Advanced Functional Materials, 2014, 24, 5557-5566. | 7.8 | 49 | | 321 | Direct imaging of layered O3- and P2-Na _x Fe _{1/2} Mn _{1/2} O ₂ structures at the atomic scale. Physical Chemistry Chemical Physics, 2014, 16, 21946-21952. | 1.3 | 50 | | 322 | Rechargeable Room-Temperature CF _{<i>x</i>} -Sodium Battery. ACS Applied Materials & linterfaces, 2014, 6, 2209-2212. | 4.0 | 48 | | 323 | Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1526-1536. | 2.0 | 36 | | 324 | Influences of Additives on the Formation of a Solid Electrolyte Interphase on MnO Electrode Studied by Atomic Force Microscopy and Force Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 20756-20762. | 1.5 | 40 | | # | Article | IF | Citations | |-----|---|------------|-----------| | 325 | New Insight in Understanding Oxygen Reduction and Evolution in Solid-State Lithium–Oxygen
Batteries Using an in Situ Environmental Scanning Electron Microscope. Nano Letters, 2014, 14,
4245-4249. | 4.5 | 104 | | 326 | Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery. Energy and Environmental Science, 2014 | , 71,5687. | 281 | | 327 | Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 269-273. | 7.1 | 23 | | 328 | 宿¸©é'离åå,¨èf½ç"µæ±ç"µæžææ−™ç»"æž"ç"究迳展. Scientia Sinica Chimica, 2014, 44, 1269-1279. | 0.2 | 2 | | 329 | A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013, 4, 2365. | 5.8 | 515 | | 330 | Effect of Ni doping on the catalytic properties of nanostructured peony-like CeO2. Chinese Journal of Catalysis, 2013, 34, 305-312. | 6.9 | 21 | | 331 | Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries. Nanotechnology, 2013, 24, 424011. | 1.3 | 21 | | 332 | Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries. Electrochimica Acta, 2013, 87, 230-235. | 2.6 | 8 | | 333 | Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries. Journal of Power Sources, 2013, 228, 112-119. | 4.0 | 58 | | 334 | Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions. Electrochimica Acta, 2013, 89, 229-238. | 2.6 | 28 | | 335 | Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. Journal of Materials Chemistry A, 2013, 1, 11130. | 5.2 | 84 | | 336 | Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4483. | 5.2 | 72 | | 337 | Reversible chemical delithiation/lithiation of LiFePO ₄ : towards a redox flow lithium-ion battery. Physical Chemistry Chemical Physics, 2013, 15, 1793-1797. | 1.3 | 169 | | 338 | A CoOx/carbon double-layer thin film air electrode for nonaqueous Li-air batteries. Journal of Power Sources, 2013, 223, 312-318. | 4.0 | 44 | | 339 | High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. Journal of Power Sources, 2013, 244, 731-735. | 4.0 | 36 | | 340 | Molten salt electrolyte based on alkali bis(fluorosulfonyl)imides for lithium batteries. Electrochimica Acta, 2013, 105, 524-529. | 2.6 | 13 | | 341 | A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries.
Nature Communications, 2013, 4, 1481. | 5.8 | 1,917 | | 342 | Preparation and characterization of LiNi0.5Mn1.5O4â^'Î' thin films taking advantage of correlations with powder samples behavior. Journal of Power Sources, 2013, 232, 165-172. | 4.0 | 23 | | # | Article | IF | Citations | |-----|---|-------------|-----------| | 343 | Two-Phase Electrochemical Lithiation in Amorphous Silicon. Nano Letters, 2013, 13, 709-715. | 4. 5 | 377 | | 344 | Defect Thermodynamics and Diffusion Mechanisms in Li ₂ CO ₃ and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 8579-8593. | 1.5 | 228 | | 345 | A Repeated Halving Approach to Fabricate Ultrathin Singleâ€Walled Carbon Nanotube Films for Transparent Supercapacitors. Small, 2013, 9, 518-524. | 5.2 | 96 | | 346 | Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications, 2013, 4, 1870. | 5.8 | 628 | | 347 | Sodium Storage and Transport Properties in Layered Na ₂ Ti ₃ O ₇ for Roomâ€Temperature Sodiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 1186-1194. | 10.2 | 456 | | 348 | Amorphous silicon–carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries. Nanoscale, 2013, 5, 5384. | 2.8 | 44 | | 349 | Atomic Structure of Li ₂ MnO ₃ after Partial Delithiation and Reâ€Lithiation. Advanced Energy Materials, 2013, 3, 1358-1367. | 10.2 | 211 | | 350 | Nanovoid Formation and Annihilation in Gallium Nanodroplets under Lithiation–Delithiation Cycling. Nano Letters, 2013, 13, 5212-5217. | 4.5 | 96 | | 351 | Erratum to "Spinel lithium titanate (Li ₄ Ti ₅ O ₁₂) as novel anode material for room-temperature sodium-ion battery". Chinese Physics B, 2012, 21, 079901. | 0.7 | 14 | | 352 | Spinel lithium titanate (Li ₄ Ti ₅ O ₁₂) as novel anode material for room-temperature sodium-ion battery. Chinese Physics B, 2012, 21, 028201. | 0.7 | 116 | | 353 | Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715. | 6.6 | 136 | | 354 | High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy.
Chemical Communications, 2012, 48, 11537. | 2.2 | 53 | | 355 | The low-temperature (400 \hat{A}° C) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751. | 1.7 | 40 | | 356 | Rutile-TiO ₂ Nanocoating for a High-Rate Li ₄ Ti ₅ O ₁₂ Anode of a Lithium-Ion Battery. Journal of the American Chemical Society, 2012, 134, 7874-7879. | 6.6 | 602 | | 357 | Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode with Atomic Force Microscopy and Spectroscopy. Nano Letters, 2012, 12, 2153-2157. | 4.5 | 170 | | 358 | Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and Environmental Science, 2012, 5, 8475. | 15.6 | 984 | | 359 | Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction. Journal of Power Sources, 2012, 216, 131-138. | 4.0 | 117 | | 360 | Electrochemical decomposition of Li2CO3 in NiO–Li2CO3 nanocomposite thin film and powder electrodes. Journal of Power Sources, 2012, 218, 113-118. | 4.0 | 93 | | # | Article | IF | CITATIONS | |-----|---|---------------|-----------| | 361 | Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4â^Î nanorods. Progress in Natural Science: Materials International, 2012, 22, 207-212. | 1.8 | 11 | | 362 | Facile Solvothermal Synthesis of Phase-Pure Cu4O3 Microspheres and Their Lithium Storage Properties. Chemistry of Materials, 2012, 24, 1136-1142. | 3.2 | 51 | | 363 | Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase. Journal of the American Chemical Society, 2012, 134, 15476-15487. | 6.6 | 524 | | 364 | Density Functional Investigation on Li ₂ MnO ₃ . Chemistry of Materials, 2012, 24, 4242-4251. | 3.2 | 244 | | 365 | First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110). Physical Chemistry Chemical Physics, 2012, 14, 1923. | 1.3 | 52 | | 366 | A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm, 2012, 14, 4344. | 1.3 | 24 | | 367 | New Insight into the Atomic Structure of Electrochemically Delithiated
O3-Li _(1–<i>x</i>) CoO ₂ (0 ≠ <i>x</i> ≠0.5) Nanoparticles. Nano Letters, 2012,
6192-6197. | 1 2, 5 | 128 | | 368 | Si-Cu Thin Film Electrode with Kirkendall Voids Structure for Lithium-lon Batteries. Journal of the Electrochemical Society, 2012, 159, A2076-A2081. | 1.3 | 26 | | 369 | Kinetically Controlled Lithium-Staging in Delithiated LiFePO⟨sub⟩4⟨/sub⟩ Driven by the Fe Center
Mediated Interlayer Li–Li Interactions. Chemistry of Materials, 2012, 24, 4693-4703. | 3.2 | 59 | | 370 | Highly ordered staging structural interface between LiFePO4 and FePO4. Physical Chemistry Chemical Physics, 2012, 14, 5363. | 1.3 | 53 | | 371 | Lithium Storage in Li ₄ Ti ₅ O ₁₂ Spinel: The Full Static Picture from Electron Microscopy. Advanced Materials, 2012, 24, 3233-3238. | 11.1 | 269 | | 372 | Disodium Terephthalate (Na ₂ C ₈ H ₄ O ₄) as High
Performance Anode Material for Low ost Roomâ€Temperature Sodiumâ€Ion Battery. Advanced Energy
Materials, 2012, 2, 962-965. | 10.2 | 498 | | 373 | Improved Liâ€Storage Performance of Li ₄ Ti ₅ O ₁₂ Coated with CïŁįN
Compounds Derived from Pyrolysis of Urea through a Lowâ€Temperature Approach. ChemSusChem, 2012,
5, 526-529. | 3.6 | 52 | | 374 | Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012, 14, 86-89. | 2.3 | 693 | | 375 | Electronic states of metal (Cu, Ag, Au) atom on CeO2(111) surface: The role of local structural distortion. Journal of Power Sources, 2012, 197, 28-37. | 4.0 | 46 | | 376 | Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries. Journal of Power Sources, 2012, 202, 236-245. | 4.0 | 70 | | 377 | Investigation of the structural changes in Li1â^'xFePO4 upon charging by synchrotron radiation techniques. Journal of Materials Chemistry, 2011, 21, 11406. | 6.7 | 64 | | 378 | An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an Iâ°' ion electrolyte. Energy and Environmental Science, 2011, 4, 1261. | 15.6 | 64 | | # | Article | IF | CITATIONS | |-----|---|-----------------|-------------| | 379 | Renewable Energy Frontier Research at the Institute of Physics, Chinese Academy of Sciences. Energy and Environmental Science, 2011, 4, 2613. | 15.6 | 0 | | 380 | A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4. Chemical Communications, 2011, 47, 7170. | 2.2 | 36 | | 381 | Thermodynamic analysis on energy densities of batteries. Energy and Environmental Science, 2011, 4, 2614. | 15.6 | 749 | | 382 | Direct Observation of Lithium Staging in Partially Delithiated LiFePO ₄ at Atomic Resolution. Journal of the American Chemical Society, 2011, 133, 4661-4663. | 6.6 | 219 | | 383 | Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy and Environmental Science, 2011, 4, 1440. | 15.6 | 310 | | 384 | Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries. Journal of the Electrochemical Society, 2011, 158, B1211. | 1.3 | 47 | | 385 | Anomalous lithium storage in a novel nanonet composed by SnO2 nanoparticles and poly(ethylene) Tj ETQq $1\ 1\ 0$ | 0.784314
6.7 | rgBT/Overlo | | 386 | Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes
Containing LiFSI in Linear Carbonate Solvents. Journal of the Electrochemical Society, 2011, 158, A74. | 1.3 | 130 | | 387 | Enhanced Activity and Stability of Cu–Mn and Cu–Ag Catalysts Supported on Nanostructured Mesoporous CeO ₂ for CO Oxidation. Journal of Nanoscience and Nanotechnology, 2011, 11, 1923-1928. | 0.9 | 5 | | 388 | High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochemistry Communications, 2011, 13, 1462-1464. | 2.3 | 181 | | 389 | A comparative study of Fd-3m and P4332 "LiNi0.5Mn1.5O4― Solid State Ionics, 2011, 193, 32-38. | 1.3 | 327 | | 390 | Porous Li ₄ Ti ₅ O ₁₂ Coated with Nâ€Doped Carbon from Ionic Liquids for Liâ€Ion Batteries. Advanced Materials, 2011, 23, 1385-1388. | 11.1 | 742 | | 391 | Aluminaâ€Coated Patterned Amorphous Silicon as the Anode for a Lithiumâ€Ion Battery with High Coulombic Efficiency. Advanced Materials, 2011, 23, 4938-4941. | 11.1 | 397 | | 392 | Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56, 4869-4875. | 2.6 | 435 | | 393 | Morphological and catalytic stability of mesoporous peony-like ceria. Microporous and Mesoporous Materials, 2011, 142, 202-207. | 2.2 | 13 | | 394 | Investigation on porous MnO microsphere anode for lithium ion batteries. Journal of Power Sources, 2011, 196, 6802-6808. | 4.0 | 211 | | 395 | Electrochemical performances of LiFe1â^'xMnxPO4 with high Mn content. Journal of Power Sources, 2011, 196, 6992-6996. | 4.0 | 51 | | 396 | Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011, 196, 3623-3632. | 4.0 | 396 | | # | Article | IF | CITATIONS | |-----|---|----------------------------------|------------| | 397 | Direct Imaging of Lithium Ions Using Aberration-Corrected Annular-Bright-Field Scanning Transmission Electron Microscopy and Associated Contrast Mechanisms. Materials Express, 2011, 1, 43-50. | 0.2 | 20 | | 398 | Significant effect of electron transfer between current collector and active material on high rate performance of Li 4 Ti 5 O 12. Chinese Physics B, 2011, 20, 118202. | 0.7 | 25 | | 399 | Nonâ€Corrosive, Nonâ€Absorbing Organic Redox Couple for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 3358-3365. | 7.8 | 109 | | 400 | MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources, 2010, 195, 3300-3308. | 4.0 | 343 | | 401 | H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. International Journal of Hydrogen Energy, 2010, 35, 3087-3091. | 3.8 | 23 | | 402 | Flowerlike microspheres catalyst NiO/La2O3 for ethanol-H2 production. International Journal of Hydrogen Energy, 2010, 35, 11687-11692. | 3.8 | 7 | | 403 | The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. Electrochemistry Communications, 2010, 12, 386-389. | 2.3 | 54 | | 404 | lonic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties. Electrochimica Acta, 2010, 55, 7134-7144. | 2.6 | 92 | | 405 | lonic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums.
Electrochimica Acta, 2010, 55, 7145-7151. | 2.6 | 71 | | 406 | A series of Lil/acetamide phase transition electrolytes and their applications in dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 895-902. | 2.6 | 17 | | 407 | Enhanced Electrochemical Performances of Carbon Coated
Mesoporous LiFe[sub 0.2]Mn[sub 0.8]PO[sub 4]. Journal of the Electrochemical Society, 2010, 157, A285. | 1.3 | 28 | | 408 | Electrochromic Behavior of Transparent Li[sub 4]Ti[sub 5]O[sub 12]/FTO Electrode. Electrochemical and Solid-State Letters, 2010, 13, 199. | 2.2 | 24 | | 409 | xmins:mmi="nttp://www.w3.org/1998/Math/MathMil"
display="inline"> <mml:mi>M</mml:mi> -doped <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>CeO</mml:mtext></mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math
 | 1.1
2 <td>112
nn></td> | 112
nn> | | 410 | Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7565. | 6.7 | 65 | | 411 | A Novel Flowerlike Nanostructured CeO2for Sustainable Energies. Journal of the Korean Ceramic Society, 2010, 47, 66-70. | 1.1 | 2 | | 412 | Research on Advanced Materials for Liâ€ion Batteries. Advanced Materials, 2009, 21, 4593-4607. | 11.1 | 1,633 | | 413 | Studies on Composite Cathode with Nanostructured Ce $<$ sub $>$ 0.9 $<$ fsub $>$ 5m $<$ sub $>$ 0.1 $<$ fsub $>$ 0 $<$ sub $>$ 1.95 $<$ fsub $>$ for Intermediate Temperature Solid Oxide Fuel Cells. Fuel Cells, 2009, 9, 650-656. | 1.5 | 15 | | 414 | TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries. Ionics, 2009, 15, 91-96. | 1,2 | 27 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 415 | Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water. Electrochemistry Communications, 2009, 11, 409-412. | 2.3 | 22 | | 416 | Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochemistry Communications, 2009, 11, 791-794. | 2.3 | 170 | | 417 | A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. Electrochemistry Communications, 2009, 11, 2296-2299. | 2.3 | 29 | | 418 | Needle-like LiFePO4 thin films prepared by an off-axis pulsed laser deposition technique. Thin Solid Films, 2009, 517, 2618-2622. | 0.8 | 29 | | 419 | A preliminary study on a new LiBOB/acetamide solid phase transition electrolyte. Solid State Ionics, 2009, 180, 688-692. | 1.3 | 8 | | 420 | Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. Microporous and Mesoporous Materials, 2009, 120, 426-431. | 2.2 | 98 | | 421 | Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity. Electrochimica Acta, 2009, 54, 6565-6569. | 2.6 | 38 | | 422 | In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge. Electrochemistry Communications, 2009, 11, 913-916. | 2.3 | 49 | | 423 | Reversible lithium storage in LiF/Ti nanocomposites. Physical Chemistry Chemical Physics, 2009, 11, 9497. | 1.3 | 61 | | 424 | Electrochemical properties of TiO2 hollow microspheres from a template-free and green wet-chemical route. Journal of Power Sources, 2008, 180, 869-874. | 4.0 | 45 | | 425 | New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors. Journal of Power Sources, 2008, 184, 517-521. | 4.0 | 76 | | 426 | Electronic structural changes of the electrochemically delithiated LiFe0.5Co0.5PO4 cathode material studied by X-ray absorption spectroscopy. Journal of Power Sources, 2008, 183, 427-430. | 4.0 | 22 | | 427 | New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochemistry Communications, 2008, 10, 1195-1197. | 2.3 | 102 | | 428 | Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution. Electrochemistry Communications, 2008, 10, 1347-1350. | 2.3 | 43 | | 429 | A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. Journal of Materials Research, 2007, 22, 1921-1926. | 1.2 | 15 | | 430 | Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chemical Communications, 2007, , 2847. | 2.2 | 97 | | 431 | First-principles study on electronic structure of LiFePO4. Solid State Communications, 2007, 143, 144-148. | 0.9 | 17 | | 432 | Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ionics, 2007, 178, 265-271. | 1.3 | 87 | | # | Article | IF | CITATIONS | |-----|---|-----|-------------| | 433 | M/Xn (MAl, Mg; XBr, I) batteries based on anion transport mechanism. Electrochemistry Communications, 2007, 9, 1-5. | 2.3 | 15 | | 434 | Ion transport in small-molecule electrolytes based on Lil/3-hydroxypropionitrile with high salt contents. Electrochimica Acta, 2007, 52, 2039-2044. | 2.6 | 21 | | 435 | Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2007, 9, 596-598. | 2.3 | 457 | | 436 | Electrochemical and structural studies of the carbon-coated Li[CrxLi(1/3â^'x/3)Ti(2/3â^'2x/3)]O2 (x=0.3,) Tj ETQq | 0 | Qverlock 10 | | 437 | Mesoscale Organization of Flower-Like La2O2CO3and La2O3Microspheres. Journal of the American Ceramic Society, 2007, 90, 2576-2581. | 1.9 | 31 | | 438 | Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction. Journal of Physics and Chemistry of Solids, 2007, 68, 1785-1790. | 1.9 | 102 | | 439 | Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres. Journal of Physical Chemistry B, 2006, 110, 13445-13452. | 1.2 | 244 | | 440 | Carbon-Coated Li[sub 1.2]Cr[sub 0.4]Ti[sub 0.4]O[sub 2] Cathode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2006, 9, A324. | 2.2 | 8 | | 441 | Origin of Solid Electrolyte Interphase on Nanosized LiCoO[sub 2]. Electrochemical and Solid-State Letters, 2006, 9, A328. | 2.2 | 63 | | 442 | Cheap and Environmentally Benign Electrochemical Energy Storage and Conversion Devices Based on All3Electrolytes. Journal of the American Chemical Society, 2006, 128, 8720-8721. | 6.6 | 46 | | 443 | Effect of Iodine Addition on Solid-State Electrolyte Lil/3-Hydroxypropionitrile (1:4) for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 5970-5974. | 1.2 | 65 | | 444 | Liâ-'Biphenylâ-'1,2-Dimethoxyethane Solution:Â Calculation and Its Application. Journal of Physical Chemistry B, 2006, 110, 10341-10347. | 1.2 | 20 | | 445 | Environmentally friendly Lil/ethanol based gel electrolyte for dye-sensitized solar cells. Electrochemistry Communications, 2006, 8, 170-172. | 2.3 | 35 | | 446 | Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochemistry Communications, 2006, 8, 51-54. | 2.3 | 168 | | 447 | Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochemistry Communications, 2006, 8, 833-838. | 2.3 | 118 | | 448 | Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries. Solid State Ionics, 2006, 177, 2675-2678. | 1.3 | 16 | | 449 | Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State lonics, 2006, 177, 2791-2799. | 1.3 | 120 | | 450 | Highly efficient dye-sensitized solar cells using a composite electrolyte. Comptes Rendus Chimie, 2006, 9, 627-630. | 0.2 | 14 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 451 | A Spontaneous Combustion Reaction for Synthesizing Pt Hollow Capsules Using Colloidal Carbon Spheres as Templates. Chemistry - A European Journal, 2006, 12, 4083-4090. | 1.7 | 52 | | 452 | Gas evolution behaviors for several cathode materials in lithium-ion batteries. Journal of Power Sources, 2005, 142, 285-291. | 4.0 | 136 | | 453 | Spectroscopic studies on the cation–anion, cation–solvent and anion–solvent interactions in the LiCF3SO3/acetamide complex system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 403-411. | 2.0 | 26 | | 454 | Spectroscopic and DFT studies to understand the liquid formation mechanism in the LiTFSI/acetamide complex system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2009-2015. | 2.0 | 27 | | 455 | Improving the rate performance of LiFePO4 by Fe-site doping. Electrochimica Acta, 2005, 50, 2955-2958. | 2.6 | 349 | | 456 | Spectroscopic studies on the mechanism of liquid formation and ionic conductivity in the LiCF3SO3/acetamide complex system. Vibrational Spectroscopy, 2005, 37, 1-10. | 1.2 | 11 | | 457 | Influence of micropore structure on Li-storage capacity in hard carbon spherules. Solid State Ionics, 2005, 176, 1151-1159. | 1.3 | 48 | | 458 | Synthesis and characterization of large scale potassium titanate nanowires with good Li-intercalation performance. Chemical Physics Letters, 2005, 406, 95-100. | 1.2 | 38 | | 459 | Ab initiostudies on the stability and electronic structure ofLiCoO2(003) surfaces. Physical Review B, 2005, 71, . | 1.1 | 29 | | 460 | Cr[sub 2]O[sub 3]-Based Anode Materials for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A66. | 2.2 | 79 | | 461 | First-principles investigation of the structural, magnetic, and electronic
properties of olivineLiFePO4. Physical Review B, 2005, 71, . | 1.1 | 57 | | 462 | Solid-State Composite Electrolyte Lil/3-Hydroxypropionitrile/SiO2for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2005, 127, 6394-6401. | 6.6 | 176 | | 463 | Controlled synthesis of CeO2nanorods by a solvothermal method. Nanotechnology, 2005, 16, 1454-1463. | 1.3 | 315 | | 464 | Ionic Conductivity and Association Studies of Novel RTMS Electrolyte Based on LiTFSI and Acetamide. Journal of the Electrochemical Society, 2004, 151, A1424. | 1.3 | 18 | | 465 | Ab initio molecular-dynamics studies on Li x Mn 2 O 4 as cathode material for lithium secondary batteries. Europhysics Letters, 2004, 67, 28-34. | 0.7 | 56 | | 466 | Effect of Morphology and Current Density on the Electrochemical Behavior of Graphite Electrodes in PC-Based Electrolyte Containing VEC Additive. Electrochemical and Solid-State Letters, 2004, 7, A442. | 2.2 | 41 | | 467 | Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochemistry Communications, 2004, 6, 126-131. | 2.3 | 151 | | 468 | New solid-state synthesis routine and mechanism for LiFePO4 using LiF as lithium precursor. Journal of Solid State Chemistry, 2004, 177, 4582-4587. | 1.4 | 60 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 469 | Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochemistry Communications, 2004, 6, 28-32. | 2.3 | 123 | | 470 | Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides. Journal of the Electrochemical Society, 2004, 151, A1878. | 1.3 | 559 | | 471 | An alternative ionic liquid based electrolyte for dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2004, 3, 918. | 1.6 | 32 | | 472 | Synthesis and Characterization of Polycrystalline CeO2Nanowires. Chemistry Letters, 2004, 33, 662-663. | 0.7 | 116 | | 473 | Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Advanced Functional Materials, 2003, 13, 621-625. | 7.8 | 598 | | 474 | Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries. Advanced Materials, 2003, 15, 736-739. | 11.1 | 334 | | 475 | Investigation of Lithium Storage in Bamboo-like CNTs by HRTEM. Journal of the Electrochemical Society, 2003, 150, A1281. | 1.3 | 24 | | 476 | Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chemistry of Materials, 2002, 14, 103-108. | 3.2 | 153 | | 477 | Nano-alloy anode for lithium ion batteries. Solid State Ionics, 2002, 148, 247-258. | 1.3 | 155 | | 478 | Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2002, 152-153, 341-346. | 1.3 | 125 | | 479 | Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics, 2002, 152-153, 43-50. | 1.3 | 197 | | 480 | Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS). Journal of Power Sources, 2002, 104, 190-194. | 4.0 | 50 | | 481 | The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy. Journal of Power Sources, 2002, 107, 1-4. | 4.0 | 48 | | 482 | Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries. Solid State Ionics, 2002, 149, 185-192. | 1.3 | 24 | | 483 | New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. Journal of Physical Chemistry B, 2001, 105, 9966-9969. | 1.2 | 85 | | 484 | Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. Journal of Materials Chemistry, 2001, 11, 1502-1505. | 6.7 | 98 | | 485 | Determination of Chemical Diffusion Coefficient of Lithium Ion in Graphitized Mesocarbon Microbeads with Potential Relaxation Technique. Journal of the Electrochemical Society, 2001, 148, A737. | 1.3 | 67 | | 486 | Electrochemical performance of Ni-deposited graphite anodes for lithium secondary batteries. Journal of Power Sources, 2001, 102, 60-67. | 4.0 | 28 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 487 | Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39, 2211-2214. | 5.4 | 644 | | 488 | Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-lon Batteries. Journal of the Electrochemical Society, 2001, 148, A915. | 1.3 | 191 | | 489 | Surface enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on silver electrode in lithium batteries. Chemical Physics Letters, 2000, 330, 249-254. | 1.2 | 46 | | 490 | The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000, 135, 181-191. | 1.3 | 401 | | 491 | Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. Journal of Materials Chemistry, 2000, 10, 693-696. | 6.7 | 64 | | 492 | Surface-Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries. Journal of Physical Chemistry B, 2000, 104, 8477-8480. | 1.2 | 25 | | 493 | Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries. Journal of Power Sources, 1999, 81-82, 340-345. | 4.0 | 111 | | 494 | The interaction between SnO anode and electrolytes. Journal of Power Sources, 1999, 81-82, 346-351. | 4.0 | 25 | | 495 | Structure and electrochemical properties of anodes consisting of modified SnO. Journal of Power Sources, 1999, 81-82, 335-339. | 4.0 | 23 | | 496 | Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries. Electrochemical and Solid-State Letters, 1999, 1, 241. | 2.2 | 77 | | 497 | A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries.
Electrochemical and Solid-State Letters, 1999, 2, 547. | 2.2 | 733 | | 498 | Studies of Stannic Oxide as an Anode Material for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 59-62. | 1.3 | 156 | | 499 | Electrochemical impedance spectroscopic study of the rate-determining step of Li ion intercalation and deintercalation in LixNiO2 cathodes. Ionics, 1996, 2, 259-265. | 1.2 | 12 | | 500 | Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion. Chinese Physics B, O, , . | 0.7 | 0 |