
## Kathleen Boris-Lawrie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/653869/publications.pdf Version: 2024-02-01



KATHLEEN BODIS-LANDIE

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | RNA helicase A is necessary for translation of selected messenger RNAs. Nature Structural and<br>Molecular Biology, 2006, 13, 509-516.                                                                                                 | 8.2  | 184       |
| 2  | Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene, 2008, 27, 4757-4767.                                                                                                                         | 5.9  | 111       |
| 3  | RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids<br>Research, 2010, 38, 1686-1696.                                                                                                      | 14.5 | 111       |
| 4  | Destiny of Unspliced Retroviral RNA: Ribosome and/or Virion?. Journal of Virology, 2002, 76, 3089-3094.                                                                                                                                | 3.4  | 101       |
| 5  | Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology, 2009, 6, 8.                                                                                            | 2.0  | 94        |
| 6  | RNA helicases. RNA Biology, 2010, 7, 775-787.                                                                                                                                                                                          | 3.1  | 89        |
| 7  | HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts<br>translational repression of HIV-1. Proceedings of the National Academy of Sciences of the United<br>States of America, 2009, 106, 605-610. | 7.1  | 88        |
| 8  | Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes. Nucleic Acids Research, 2011, 39, 3724-3734.                                                                                                     | 14.5 | 86        |
| 9  | Tertiary Structural and Functional Analyses of a Viroid RNA Motif by Isostericity Matrix and<br>Mutagenesis Reveal Its Essential Role in Replication. Journal of Virology, 2006, 80, 8566-8581.                                        | 3.4  | 80        |
| 10 | Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated<br>Impairment of eIF4E Translation Activity. PLoS Pathogens, 2012, 8, e1002612.                                                      | 4.7  | 78        |
| 11 | Recent advances in retrovirus vector technology. Current Opinion in Genetics and Development, 1993,<br>3, 102-109.                                                                                                                     | 3.3  | 71        |
| 12 | Translation Is Not Required To Generate Virion Precursor RNA in Human Immunodeficiency Virus Type<br>1-Infected T Cells. Journal of Virology, 2000, 74, 11531-11537.                                                                   | 3.4  | 60        |
| 13 | The Retroviral Vector: Replication Cycle and Safety Considerations for Retrovirus-Mediated Gene<br>Therapy. Annals of the New York Academy of Sciences, 1994, 716, 59-71.                                                              | 3.8  | 55        |
| 14 | The 5′ RNA Terminus of Spleen Necrosis Virus Contains a Novel Posttranscriptional Control Element<br>That Facilitates Human Immunodeficiency Virus Rev/RRE-Independent Gag Production. Journal of<br>Virology, 1999, 73, 4847-4855.    | 3.4  | 54        |
| 15 | Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1.<br>Retrovirology, 2011, 8, 36.                                                                                                         | 2.0  | 50        |
| 16 | RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Research, 2007, 35, 2629-2642.                                                         | 14.5 | 48        |
| 17 | Human T-Cell Lymphotropic Virus Type 1 p12 I Enhances Interleukin-2 Production during T-Cell<br>Activation. Journal of Virology, 2003, 77, 11027-11039.                                                                                | 3.4  | 42        |
| 18 | Features of Double-stranded RNA-binding Domains of RNA Helicase A Are Necessary for Selective<br>Recognition and Translation of Complex mRNAs*. Journal of Biological Chemistry, 2011, 286, 5328-5337.                                 | 3.4  | 42        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The 5′ RNA Terminus of Spleen Necrosis Virus Stimulates Translation of Nonviral mRNA. Journal of Virology, 2000, 74, 8111-8118.                                                                                                | 3.4 | 38        |
| 20 | Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes. Retrovirology, 2004, 1, 39.                                                     | 2.0 | 36        |
| 21 | RU5 of Mason-Pfizer Monkey Virus 5′ Long Terminal Repeat Enhances Cytoplasmic Expression of Human<br>Immunodeficiency Virus Type 1 gag-pol and Nonviral Reporter RNA. Journal of Virology, 2002, 76,<br>10211-10218.           | 3.4 | 33        |
| 22 | Retroviral RNA elements integrate components of post-transcriptional gene expression. Life Sciences, 2001, 69, 2697-2709.                                                                                                      | 4.3 | 32        |
| 23 | Retrovirus Translation Initiation: Issues and Hypotheses Derived from Study of HIV-1. Current HIV Research, 2006, 4, 131-139.                                                                                                  | 0.5 | 32        |
| 24 | DHX9/RHA Binding to the PBS-Segment of the Genomic RNA during HIV-1 Assembly Bolsters Virion<br>Infectivity. Journal of Molecular Biology, 2016, 428, 2418-2429.                                                               | 4.2 | 29        |
| 25 | Development of an Rev-Independent, Minimal Simian Immunodeficiency Virus-Derived Vector System.<br>Human Gene Therapy, 2001, 12, 847-857.                                                                                      | 2.7 | 27        |
| 26 | Primary Sequence and Secondary Structure Motifs in Spleen Necrosis Virus RU5 Confer Translational<br>Utilization of Unspliced Human Immunodeficiency Virus Type 1 Reporter RNA. Journal of Virology, 2003,<br>77, 11973-11984. | 3.4 | 25        |
| 27 | The basal translation rate of authentic HIV-1 RNA is regulated by 5'UTR nt-pairings at junction of R and U5. Scientific Reports, 2017, 7, 6902.                                                                                | 3.3 | 24        |
| 28 | In vivo study of genetically simplified bovine leukemia virus derivatives that lack tax and rex. Journal of Virology, 1997, 71, 1514-1520.                                                                                     | 3.4 | 24        |
| 29 | HIV-1 and two avian retroviral 5′ untranslated regions bind orthologous human and chicken RNA binding proteins. Virology, 2015, 486, 307-320.                                                                                  | 2.4 | 23        |
| 30 | HIV-1 hypermethylated guanosine cap licenses specialized translation unaffected by mTOR. Proceedings of the United States of America, 2022, 119, .                                                                             | 7.1 | 22        |
| 31 | Cellular RNA helicases and HIV-1: Insights from genome-wide, proteomic, and molecular studies. Virus<br>Research, 2013, 171, 357-365.                                                                                          | 2.2 | 20        |
| 32 | Genetically simpler bovine leukemia virus derivatives can replicate independently of Tax and Rex.<br>Journal of Virology, 1995, 69, 1920-1924.                                                                                 | 3.4 | 20        |
| 33 | Nuclear Interactions Are Necessary for Translational Enhancement by Spleen Necrosis Virus RU5.<br>Journal of Virology, 2002, 76, 3292-3300.                                                                                    | 3.4 | 19        |
| 34 | Stress-Induced Isoforms of MDM2 and MDM4 Correlate with High-Grade Disease and an Altered Splicing Network in Pediatric Rhabdomyosarcoma. Neoplasia, 2013, 15, 1049-IN8.                                                       | 5.3 | 19        |
| 35 | Virion-associated, host-derived DHX9/RNA helicase A enhances the processivity of HIV-1 reverse transcriptase on genomic RNA. Journal of Biological Chemistry, 2019, 294, 11473-11485.                                          | 3.4 | 19        |
| 36 | NOD/SCID mouse model of canine T-cell lymphoma with humoral hypercalcaemia of malignancy:<br>cytokine gene expression profiling and in vivo bioluminescent imaging. Veterinary and Comparative<br>Oncology, 2008, 6, 39-54.    | 1.8 | 15        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Determination of Host RNA Helicases Activity in Viral Replication. Methods in Enzymology, 2012, 511, 405-435.                                                                                                             | 1.0  | 15        |
| 38 | Human T Lymphotropic Virus Type 1 Accessory Protein p12IModulates Calcium-Mediated Cellular Gene<br>Expression and Enhances p300 Expression in T Lymphocytes. AIDS Research and Human Retroviruses,<br>2005, 21, 273-284. | 1.1  | 14        |
| 39 | Human T-Cell Leukemia Virus Open Reading Frame II Encodes a Posttranscriptional Repressor That Is<br>Recruited at the Level of Transcription. Journal of Virology, 2006, 80, 181-191.                                     | 3.4  | 14        |
| 40 | Analysis of synergy between divergent simple retrovirus posttranscriptional control elements.<br>Virology, 2003, 317, 146-154.                                                                                            | 2.4  | 13        |
| 41 | The mRNA encoding the JUND tumor suppressor detains nuclear RNA-binding proteins to assemble polysomes that are unaffected by mTOR. Journal of Biological Chemistry, 2020, 295, 7763-7773.                                | 3.4  | 13        |
| 42 | Identification of conserved, primary sequence motifs that direct retrovirus RNA fate. Nucleic Acids Research, 2018, 46, 7366-7378.                                                                                        | 14.5 | 12        |
| 43 | Bovine Leukemia Virus Structural Gene Vectors Are Immunogenic and Lack Pathogenicity in a Rabbit<br>Model. Journal of Virology, 1999, 73, 8160-8166.                                                                      | 3.4  | 12        |
| 44 | Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology, 2004, 329, 434-439.                                                            | 2.4  | 10        |
| 45 | Coordinate enhancement of transgene transcription and translation in a lentiviral vector.<br>Retrovirology, 2006, 3, 13.                                                                                                  | 2.0  | 10        |
| 46 | The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity. Nucleic Acids Research, 2021, 49, 5925-5942.                                                                 | 14.5 | 9         |
| 47 | Circular RNAs Are Regulators of Diverse Animal Transcriptomes: One Health Perspective. Frontiers in<br>Genetics, 2020, 11, 999.                                                                                           | 2.3  | 7         |
| 48 | Anomalous HIV-1 RNA, How Cap-Methylation Segregates Viral Transcripts by Form and Function.<br>Viruses, 2022, 14, 935.                                                                                                    | 3.3  | 6         |
| 49 | Bridging fundamental RNA biology, retroviral replication, and oncogenesis: Karen Beemon wins the 2007 Retrovirology Prize. Retrovirology, 2007, 4, 88.                                                                    | 2.0  | 5         |
| 50 | A New Approach to 3D Modeling of Inhomogeneous Populations of Viral Regulatory RNA. Viruses, 2020, 12, 1108.                                                                                                              | 3.3  | 4         |
| 51 | Isolation of Cognate Cellular and Viral Ribonucleoprotein Complexes of HIV-1 RNA Applicable to<br>Proteomic Discovery and Molecular Investigations. Methods in Molecular Biology, 2016, 1354, 133-146.                    | 0.9  | 4         |
| 52 | Isolation of Cognate RNA-protein Complexes from Cells Using Oligonucleotide-directed Elution.<br>Journal of Visualized Experiments, 2017, , .                                                                             | 0.3  | 3         |
| 53 | Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA<br>Networks Exclusive to HIV-1 Viremic Patients. Viruses, 2022, 14, 683.                                                        | 3.3  | 3         |
| 54 | Protect NIH's DNA advisory committee. Science, 2018, 362, 409-410.                                                                                                                                                        | 12.6 | 2         |

| #  | Article                                                                                            | IF | CITATIONS |
|----|----------------------------------------------------------------------------------------------------|----|-----------|
| 55 | Cellular RNA Helicases Support Early and Late Events in Retroviral Replication. , 2018, , 253-271. |    | 1         |
| 56 | Human and Animal Retroviruses: HIV-1 Infection Is a Risk Factor for Malignancy. , 2012, , 585-611. |    | 0         |