Üner Kolukisaoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6538012/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	12.6	794
2	Plant ABC proteins – a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13, 151-159.	8.8	652
3	Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks. Plant Physiology, 2004, 134, 43-58.	4.8	564
4	Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta, 2002, 214, 345-355.	3.2	394
5	The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant Journal, 2003, 36, 457-470.	5.7	286
6	TWISTED DWARF1, a Unique Plasma Membrane-anchored Immunophilin-like Protein, Interacts withArabidopsisMultidrug Resistance-like Transporters AtPGP1 and AtPGP19. Molecular Biology of the Cell, 2003, 14, 4238-4249.	2.1	247
7	The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO Journal, 2001, 20, 1875-1887.	7.8	206
8	Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 9, 194.	2.8	204
9	An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant Journal, 2002, 32, 685-699.	5.7	165
10	Genetic manipulation of glycine decarboxylation. Journal of Experimental Botany, 2003, 54, 1523-1535.	4.8	149
11	Disruption ofAtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant Journal, 2004, 39, 219-236.	5.7	141
12	d-GLYCERATE 3-KINASE, the Last Unknown Enzyme in the Photorespiratory Cycle in Arabidopsis, Belongs to a Novel Kinase Family. Plant Cell, 2005, 17, 2413-2420.	6.6	126
13	Deletion of Glycine Decarboxylase in Arabidopsis Is Lethal under Nonphotorespiratory Conditions. Plant Physiology, 2007, 144, 1328-1335.	4.8	126
14	ArabidopsisImmunophilin-like TWD1 Functionally Interacts with Vacuolar ABC Transporters. Molecular Biology of the Cell, 2004, 15, 3393-3405.	2.1	99
15	Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta, 2002, 216, 107-119.	3.2	76
16	An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions?. Plant Biology, 2010, 12, 15-25.	3.8	67
17	Genomics of plant ABC transporters: The alphabet of photosynthetic life forms or just holes in membranes?. FEBS Letters, 2006, 580, 1010-1016.	2.8	66
18	Comparative Mutant Analysis of Arabidopsis ABCC-Type ABC Transporters: AtMRP2 Contributes to Detoxification, Vacuolar Organic Anion Transport and Chlorophyll Degradation. Plant and Cell Physiology, 2008, 49, 557-569.	3.1	66

Üner Kolukisaoglu

#	Article	IF	CITATIONS
19	An α-galactosidase with an essential function during leaf development. Planta, 2006, 225, 311-320.	3.2	60
20	Uptake and conversion of d-amino acids in Arabidopsis thaliana. Amino Acids, 2011, 40, 553-563.	2.7	48
21	Divergence of the phytochrome gene family predates angiosperm evolution and suggests thatSelaginella andEquisetum arose prior toPsilotum. Journal of Molecular Evolution, 1995, 41, 329-337.	1.8	47
22	Future and frontiers of automated screening in plant sciences. Plant Science, 2010, 178, 476-484.	3.6	47
23	ANALYSIS OF EXPRESSED SEQUENCE TAGS (ESTS) FROM THE POLAR DIATOM FRAGILARIOPSIS CYLINDRUS1. Journal of Phycology, 2006, 42, 78-85.	2.3	46
24	Non-angiosperm phytochromes and the evolution of vascular plants. Physiologia Plantarum, 1998, 102, 612-622.	5.2	42
25	Phytochrome evolution: Phytochrome genes in ferns and mosses. Physiologia Plantarum, 1994, 91, 241-250.	5.2	38
26	Mitochondrial Protein Lipoylation Does Not Exclusively Depend on the mtKAS Pathway of de Novo Fatty Acid Synthesis in Arabidopsis. Plant Physiology, 2007, 145, 41-48.	4.8	38
27	Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nature Communications, 2018, 9, 643.	12.8	35
28	Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biology, 2018, 18, 311.	3.6	33
29	Mosses do express conventional, distantly B-type-related phytochromes phytochrome ofPhyscomitrella patens(Hedw.). FEBS Letters, 1993, 334, 95-100.	2.8	30
30	Phytochrome types in Picea and Pinus. Expression patterns of PHYA-Related types. Plant Molecular Biology, 1999, 40, 669-678.	3.9	27
31	Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplasts. Molecular Genetics and Genomics, 2004, 272, 379-396.	2.1	26
32	Analyses of Arabidopsis ecotypes reveal metabolic diversity to convert D-amino acids. SpringerPlus, 2013, 2, 559.	1.2	23
33	d-Amino Acids in Plants: Sources, Metabolism, and Functions. International Journal of Molecular Sciences, 2020, 21, 5421.	4.1	22
34	Screening for Protein-DNA Interactions by Automatable DNA-Protein Interaction ELISA. PLoS ONE, 2013, 8, e75177.	2.5	20
35	d-Amino Acids Are Exuded by Arabidopsis thaliana Roots to the Rhizosphere. International Journal of Molecular Sciences, 2018, 19, 1109.	4.1	13
36	Editorial: Physiological Aspects of Non-proteinogenic Amino Acids in Plants. Frontiers in Plant Science, 2020, 11, 519464.	3.6	11

Üner Kolukisaoglu

#	Article	IF	CITATIONS
37	The Influence on Cell Growth Properties in Different Microtiterplate Types by Coronaâ€Dielectric Barrier Discharge Plasma at Atmospheric Pressure. Plasma Processes and Polymers, 2011, 8, 70-76.	3.0	7
38	AtDAT1 Is a Key Enzyme of D-Amino Acid Stimulated Ethylene Production in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1609.	3.6	7
39	Arabidopsis PII Proteins Form Characteristic Foci in Chloroplasts Indicating Novel Properties in Protein Interaction and Degradation. International Journal of Molecular Sciences, 2021, 22, 12666.	4.1	6
40	The Striking Flower-in-Flower Phenotype of Arabidopsis thaliana Nossen (No-0) is Caused by a Novel LEAFY Allele. Plants, 2019, 8, 599.	3.5	4
41	The Minus-End-Directed Kinesin OsDLK Shuttles to the Nucleus and Modulates the Expression of Cold-Box Factor 4. International Journal of Molecular Sciences, 2022, 23, 6291.	4.1	4
42	Inhibitory effects of phthalimide derivatives on the activity of the hepatic cytochrome P450 monooxygenases CYP2C9 and CYP2C19. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 876-886.	5.2	3
43	Hybrid Chemoenzymatic Synthesis of C7‣ugars for Molecular Evidence of in vivo Shikimate Pathway Inhibition. ChemBioChem, 2022, , .	2.6	3
44	Light-regulated transcription of a cryptochrome gene in the green algaMougeotia scalaris. Protoplasma, 2000, 214, 194-198.	2.1	2
45	D-Amino Acids in Plants: New Insights and Aspects, but also More Open Questions. , 2017, , .		1