
Stephen G Willis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6538005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Where nothing stands still: quantifying nomadism in Australian arid-zone birds. Landscape Ecology, 2022, 37, 191-208.	4.2	1
2	Phenological trends in the pre―and postâ€breeding migration of longâ€distance migratory birds. Global Change Biology, 2022, 28, 375-389.	9.5	16
3	Global impacts of climate change on avian functional diversity. Ecology Letters, 2022, 25, 673-685.	6.4	26
4	Global inequities and political borders challenge nature conservation under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
5	Using indices of species' potential range to inform conservation status. Ecological Indicators, 2021, 123, 107343.	6.3	4
6	Site-Based Conservation of Terrestrial Bird Species in the Caribbean and Central and South America Under Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3
7	Disentangling the relative roles of climate and land cover change in driving the longâ€ŧerm population trends of European migratory birds. Diversity and Distributions, 2020, 26, 1442-1455.	4.1	51
8	Automated detection and classification of birdsong: An ensemble approach. Ecological Indicators, 2020, 117, 106609.	6.3	20
9	Burning savanna for avian species richness and functional diversity. Ecological Applications, 2020, 30, e02091.	3.8	21
10	Rapid assessment of avian species richness and abundance using acoustic indices. Ecological Indicators, 2020, 115, 106400.	6.3	63
11	Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 2019, 10, 1796-1807.	5.2	134
12	Population responses of bird populations to climate change on two continents vary with species' ecological traits but not with direction of change in climate suitability. Climatic Change, 2019, 157, 337-354.	3.6	23
13	The influence of different aspects of grouse moorland management on nontarget bird assemblages. Ecology and Evolution, 2019, 9, 11089-11101.	1.9	6
14	The limits to population density in birds and mammals. Ecology Letters, 2019, 22, 654-663.	6.4	37
15	Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172329.	2.6	45
16	Tritrophic phenological match–mismatch in space and time. Nature Ecology and Evolution, 2018, 2, 970-975.	7.8	108
17	Forecasting potential routes for movement of endemic birds among important sites for biodiversity in the Albertine Rift under projected climate change. Ecography, 2018, 41, 401-413.	4.5	11
18	Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13294-13299.	7.1	82

STEPHEN G WILLIS

#	Article	IF	CITATIONS
19	Neglected issues in using weather and climate information in ecology and biogeography. Diversity and Distributions, 2017, 23, 329-340.	4.1	25
20	Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. Journal of Biogeography, 2017, 44, 709-721.	3.0	68
21	Choice of baseline climate data impacts projected species' responses to climate change. Global Change Biology, 2016, 22, 2392-2404.	9.5	66
22	Consistent response of bird populations to climate change on two continents. Science, 2016, 352, 84-87.	12.6	212
23	Assessing the Performance of EU Nature Legislation in Protecting Target Bird Species in an Era of Climate Change. Conservation Letters, 2016, 9, 172-180.	5.7	72
24	The drivers of avian abundance: patterns in the relative importance of climate and land use. Global Ecology and Biogeography, 2015, 24, 1249-1260.	5.8	42
25	Nationwide trophic cascades: changes in avian community structure driven by ungulates. Scientific Reports, 2015, 5, 15601.	3.3	11
26	Predicting the Spatial Distribution of Wolf (Canis lupus) Breeding Areas in a Mountainous Region of Central Italy. PLoS ONE, 2015, 10, e0124698.	2.5	45
27	Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.	18.8	856
28	Topographical variation reduces phenological mismatch between a butterfly and its nectar source. Journal of Insect Conservation, 2015, 19, 227-236.	1.4	21
29	Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biological Conservation, 2015, 190, 167-178.	4.1	70
30	Assessing climate change impacts for vertebrate fauna across the West African protected area network using regionally appropriate climate projections. Diversity and Distributions, 2015, 21, 991-1003.	4.1	23
31	Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects. Global Change Biology, 2014, 20, 3872-3882.	9.5	93
32	Improving species distribution models: the value of data on abundance. Methods in Ecology and Evolution, 2014, 5, 506-513.	5.2	145
33	Environmental change and long-term body mass declines in an alpine mammal. Frontiers in Zoology, 2014, 11, .	2.0	35
34	Conserving mobile species. Frontiers in Ecology and the Environment, 2014, 12, 395-402.	4.0	371
35	Prediction of mean adult survival rates of southern African birds from demographic and ecological covariates. Ibis, 2014, 156, 741-754.	1.9	5
36	Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Global Change Biology, 2013, 19, 1236-1248.	9.5	77

STEPHEN G WILLIS

#	Article	IF	CITATIONS
37	Foraging Ranges of Immature African White-Backed Vultures (Gyps africanus) and Their Use of Protected Areas in Southern Africa. PLoS ONE, 2013, 8, e52813.	2.5	70
38	Intraseasonal Variation in Reproductive Effort: Young Males Finish Last. American Naturalist, 2012, 180, 823-830.	2.1	13
39	Prey Selection by an Apex Predator: The Importance of Sampling Uncertainty. PLoS ONE, 2012, 7, e47894.	2.5	26
40	Contrasting Life Histories in Neighbouring Populations of a Large Mammal. PLoS ONE, 2011, 6, e28002.	2.5	27
41	Targeting research to underpin climate change adaptation for birds. Ibis, 2011, 153, 207-211.	1.9	19
42	Toward a Management Framework for Networks of Protected Areas in the Face of Climate Change. Conservation Biology, 2011, 25, no-no.	4.7	78
43	Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches. Malaria Journal, 2010, 9, 70.	2.3	33
44	Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change. Ecography, 2010, 33, 621-626.	4.5	79
45	Assisted colonization in a changing climate: a testâ€study using two U.K. butterflies. Conservation Letters, 2009, 2, 46-52.	5.7	133
46	Assessing the Impacts of Future Climate Change on Protected Area Networks: A Method to Simulate Individual Species' Responses. Environmental Management, 2009, 43, 836-845.	2.7	24
47	Potential impacts of climatic change on the breeding and nonâ€breeding ranges and migration distance of European <i>Sylvia</i> warblers. Journal of Biogeography, 2009, 36, 1194-1208.	3.0	80
48	Dynamic distribution modelling: predicting the present from the past. Ecography, 2009, 32, 5-12.	4.5	41
49	Projected impacts of climate change on a continentâ€wide protected area network. Ecology Letters, 2009, 12, 420-431.	6.4	240
50	An Indicator of the Impact of Climatic Change on European Bird Populations. PLoS ONE, 2009, 4, e4678.	2.5	226
51	Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change. Biology Letters, 2008, 4, 599-602.	2.3	94
52	Potential Impacts of Climatic Change on European Breeding Birds. PLoS ONE, 2008, 3, e1439.	2.5	233
53	Sr isotope analysis of bird feathers by TIMS: a tool to trace bird migration paths and breeding sites. Journal of Analytical Atomic Spectrometry, 2007, 22, 513.	3.0	57
54	Potential impacts of climatic change upon geographical distributions of birds. Ibis, 2006, 148, 8-28.	1.9	188

STEPHEN G WILLIS

#	Article	IF	CITATIONS
55	Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1465-1470.	2.6	288
56	The performance of models relating species geographical distributions to climate is independent of trophic level. Ecology Letters, 2004, 7, 417-426.	6.4	134
57	Environmental severity and variation in the reproductive traits of Impatiens glandulifera. Functional Ecology, 2004, 18, 887-898.	3.6	49
58	Responses of butterflies to twentieth century climate warming: implications for future ranges. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2163-2171.	2.6	363
59	Does temperature limit the invasion of Impatiens glandulifera and Heracleum mantegazzianum in the UK?. Functional Ecology, 2002, 16, 530-539.	3.6	74
60	Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 2001, 414, 65-69.	27.8	1,096
61	Simulating the spread and management of alien riparian weeds: are they out of control?. Journal of Applied Ecology, 2000, 37, 28-38.	4.0	138
62	Vegetation responses to local climatic changes induced by a water-storage reservoir. Global Ecology and Biogeography, 1998, 7, 241-257.	5.8	5
63	Vegetation Responses to Local Climatic Changes Induced by a Water-Storage Reservoir. Global Ecology and Biogeography Letters, 1998, 7, 241.	0.6	6