Justin Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/653754/publications.pdf

Version: 2024-02-01

	172457	197818
2,832	29	49
citations	h-index	g-index
109	109	4771
docs citations	times ranked	citing authors
	citations 109	2,832 29 citations h-index 109 109

#	Article	IF	CITATIONS
1	Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nature Physics, 2014, 10, 835-839.	16.7	271
2	Atomic Hydrogen Adsorbate Structures on Graphene. Journal of the American Chemical Society, 2009, 131, 8744-8745.	13.7	255
3	Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. Nature Materials, 2018, 17, 21-28.	27.5	144
4	High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14503-14512.	8.0	120
5	Spin–valley locking in the normal state of a transition-metal dichalcogenide superconductor. Nature Communications, 2016, 7, 11711.	12.8	85
6	Comparing Ullmann Coupling on Noble Metal Surfaces: Onâ€Surface Polymerization of 1,3,6,8â€Tetrabromopyrene on Cu(111) and Au(111). Chemistry - A European Journal, 2016, 22, 5937-5944.	3.3	84
7	Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103870.	14.9	72
8	Nondegenerate Metallic States on Bi(114): A One-Dimensional Topological Metal. Physical Review Letters, 2009, 102, 096802.	7.8	65
9	Surface-sensitive conductance measurements. Journal of Physics Condensed Matter, 2009, 21, 013003.	1.8	65
10	Robust Surface Doping of Bi ₂ Se ₃ by Rubidium Intercalation. ACS Nano, 2012, 6, 7009-7015.	14.6	64
11	Self-assembly of pyrene derivatives on $Au(111)$: substituent effects on intermolecular interactions. Chemical Communications, 2014, 50, 14089-14092.	4.1	61
12	Disentangling Surface, Bulk, and Space-Charge-Layer Conductivity inSi(111)â^'(7×7). Physical Review Letters, 2006, 97, 206803.	7.8	52
13	Interfacial electronic structures revealed at the rubrene/CH ₃ NH ₃ Pbl ₃ interface. Physical Chemistry Chemical Physics, 2017, 19, 6546-6553.	2.8	50
14	Exploring the Limits of N-Type Ultra-Shallow Junction Formation. ACS Nano, 2013, 7, 5499-5505.	14.6	44
15	Tunable high aspect ratio polymer nanostructures for cell interfaces. Nanoscale, 2015, 7, 8438-8450.	5.6	44
16	Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition. Nature Chemistry, 2020, 12, 1035-1041.	13.6	41
17	Thickness dependence of dynamic and static magnetic properties of pulsed laser deposited La0.7Sr0.3MnO3 films on SrTiO3(001). Journal of Magnetism and Magnetic Materials, 2014, 369, 197-204.	2.3	40
18	On-surface manipulation of atom substitution between cobalt phthalocyanine and the Cu(111) substrate. RSC Advances, 2017, 7, 13827-13835.	3.6	40

#	Article	IF	CITATIONS
19	Direct measurement of electrical conductance through a self-assembled molecular layer. Nature Nanotechnology, 2009, 4, 373-376.	31.5	39
20	Low-Temperature Growth of Bismuth Thin Films with (111) Facet on Highly Oriented Pyrolytic Graphite. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8525-8532.	8.0	39
21	Hierarchical spin-orbital polarization of a giant Rashba system. Science Advances, 2015, 1, e1500495.	10.3	38
22	Kinks in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>if </mml:mi></mml:math> Band of Graphene Induced by Electron-Phonon Coupling. Physical Review Letters, 2013, 111, 216806.	7.8	36
23	Determining the electron-phonon mass enhancement parameter λ on metal surfaces. Applied Physics A: Materials Science and Processing, 2005, 80, 943-949.	2.3	34
24	Iron-mediated growth of epitaxial graphene on SiC and diamond. Carbon, 2012, 50, 5099-5105.	10.3	34
25	Fabrication of NiSe2 by direct selenylation of a nickel surface. Applied Surface Science, 2018, 428, 623-629.	6.1	33
26	Growth and morphology of SnPc films on the S-GaAs(001) surface: a combined XPS, AFM and NEXAFS study. Applied Surface Science, 2004, 234, 131-137.	6.1	32
27	The conductivity of Bi(111) investigated with nanoscale four point probes. Journal of Applied Physics, 2008, 104, 053717.	2.5	32
28	Microscopic four-point-probe resistivity measurements of shallow, high density doping layers in silicon. Applied Physics Letters, 2012, 101, .	3.3	32
29	Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas. Physical Review Letters, 2013, 110, 136801.	7.8	30
30	Effects of monolayer Bi on the self-assembly of DBBA on Au(111). Surface Science, 2017, 665, 89-95.	1.9	30
31	Structural and electronic properties of atomically thin Bismuth on Au(111). Surface Science, 2019, 679, 147-153.	1.9	29
32	Strong electron-phonon coupling in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\ddot{l} </mml:mi></mml:math> band of graphene. Physical Review B, 2017, 95, .	3.2	27
33	Surface-sensitive conductivity measurement using a micro multi-point probe approach. Review of Scientific Instruments, 2013, 84, 033901.	1.3	25
34	PbI ₂ –MoS ₂ Heterojunction: van der Waals Epitaxial Growth and Energy Band Alignment. Journal of Physical Chemistry Letters, 2019, 10, 4203-4208.	4.6	25
35	Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials. Physical Chemistry Chemical Physics, 2021, 23, 7653-7672.	2.8	25
36	Surface stoichiometry of La0.7Sr0.3MnO3 during in vacuo preparation; A synchrotron photoemission study. Surface Science, 2012, 606, 1360-1366.	1.9	24

#	Article	IF	Citations
37	From MoO ₂ @MoS ₂ Core–Shell Nanorods to MoS ₂ Nanobelts. Physica Status Solidi (B): Basic Research, 2018, 255, 1800254.	1.5	23
38	Fabricating Quasi-Free-Standing Graphene on a SiC(0001) Surface by Steerable Intercalation of Iron. Journal of Physical Chemistry C, 2018, 122, 21484-21492.	3.1	23
39	Synchrotron radiation studies of the growth and beam damage of tin-phthalocyanine on GaAs(001)-1 ×6 substrates. Applied Surface Science, 2004, 234, 144-148.	6.1	22
40	High-Light-Tolerance Pbl ₂ Boosting the Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Each Stability and Efficiency of Perovskite Solar Cells.	8.0	21
41	Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Research, 0 , , 1 .	10.4	20
42	Ullmann coupling of 2,7-dibromopyrene on Au(1Â1Â1) assisted by surface adatoms. Applied Surface Science, 2020, 513, 145797.	6.1	19
43	Electronic properties of interfaces between perylene derivatives and GaAs(001) surfaces. Journal of Physics Condensed Matter, 2003, 15, S2679-S2692.	1.8	18
44	A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale. Applied Physics Letters, 2008, 93, .	3.3	18
45	Valley Splitting in a Silicon Quantum Device Platform. Nano Letters, 2014, 14, 1515-1519.	9.1	18
46	Mechanistic Understanding of Sizeâ€Dependent Oxygen Reduction Activity and Selectivity over Pt/CNT Nanocatalysts. European Journal of Inorganic Chemistry, 2019, 2019, 3210-3217.	2.0	18
47	Excitation of Coherent Phonons in the One-Dimensional Bi(114) Surface. Physical Review Letters, 2013, 110, 136806.	7.8	17
48	Disentangling phonon and impurity interactions in δ-doped Si(001). Applied Physics Letters, 2014, 104, 173108.	3.3	16
49	Surface-sensitive conductance measurements on clean and stepped semiconductor surfaces: Numerical simulations of four point probe measurements. Surface Science, 2008, 602, 1742-1749.	1.9	15
50	Chiral Self-Assembly of Nonplanar 10,10′-Dibromo-9,9′-bianthryl Molecules on Ag(111). Langmuir, 2017, 33, 2993-2999.	3.5	15
51	Strong-coupling charge density wave in a one-dimensional topological metal. Physical Review B, 2019, 99, .	3.2	15
52	The sub-band structure of atomically sharp dopant profiles in silicon. Npj Quantum Materials, 2020, 5,	5. 2	15
53	The structure of Sb(111) determined by photoelectron diffraction. Surface Science, 2007, 601, 2908-2911.	1.9	14
54	Thermal switching of the electrical conductivity of $Si(111)$ ()Ag due to a surface phase transition. Journal of Physics Condensed Matter, 2007, 19, 176008.	1.8	13

#	Article	IF	CITATIONS
55	Observation and origin of the Δ manifold in Si:P δlayers. Physical Review B, 2020, 101, .	3.2	13
56	A matrix approach to resolution enhancement of XPS spectra by a modified maximum entropy method. Journal of Electron Spectroscopy and Related Phenomena, 2006, 152, 37-43.	1.7	12
57	Hole doping of graphene supported on Ir(111) by AlBr3. Applied Physics Letters, 2013, 102, 061601.	3.3	12
58	One-dimensional spin texture of Bi(441): Quantum spin Hall properties without a topological insulator. Physical Review B, 2015, 91, .	3.2	12
59	Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface. Surface Science, 2017, 661, 34-41.	1.9	12
60	Probing dimensionality using a simplified 4-probe method. Journal of Physics Condensed Matter, 2017, 29, 394008.	1.8	12
61	Epitaxial Growth of Free-Standing Bismuth Film on Graphene Embedded with Nontrivial Properties. ACS Applied Electronic Materials, 2019, 1, 1817-1824.	4.3	12
62	Determining the Electronic Confinement of a Subsurface Metallic State. ACS Nano, 2014, 8, 10223-10228.	14.6	11
63	Graphene coatings for chemotherapy: avoiding silver-mediated degradation. 2D Materials, 2015, 2, 025004.	4.4	11
64	Hierarchically Manipulated Charge Recombination for Mitigating Energy Loss in CsPbI2Br Solar Cells. ACS Applied Materials & Damp; Interfaces, 2020, 12, 41596-41604.	8.0	11
65	Phonon-mediated superconductivity in doped monolayer materials. Physical Review B, 2020, 101, .	3.2	11
66	An XPS study of the interaction between tin(II) phthalocyanine and polycrystalline iron. Journal of Electron Spectroscopy and Related Phenomena, 2004, 141, 67-72.	1.7	10
67	Structural Transformation of 2,7â€Dibromopyrene on Au(111) Mediated by Halogenâ€Bonding Motifs. ChemPhysChem, 2019, 20, 2376-2381.	2.1	10
68	Controlling the growth of epitaxial graphene on metalized diamond (111) surface. Applied Physics Letters, 2015, 107, 181603.	3.3	9
69	XAFS and SRGI-XRD studies of the local structure of tellurium corrosion of Ni–18%Cr alloy. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	3.4	9
70	Interaction of the Cation and Vacancy in Hybrid Perovskites Induced by Light Illumination. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42369-42377.	8.0	9
71	Initiating Ullmann-like coupling of Br2Py by a semimetal surface. Scientific Reports, 2021, 11, 3414.	3.3	9
72	The layerâ€byâ€layer stoichiometry of La _{0.7} Sr _{0.3} MnO ₃ /SrTiO ₃ thin films and interfaces. Surface and Interface Analysis, 2013, 45, 1144-1147.	1.8	8

#	Article	IF	Citations
73	Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal. Crystals, 2018, 8, 232.	2.2	8
74	Electronic and structural properties of the natural dyes curcumin, bixin and indigo. RSC Advances, 2021, 11, 14169-14177.	3.6	8
75	Enhanced dissociation activation of CO2 on the Bi/Cu(1 11) interface by the synergistic effect. Journal of Catalysis, 2022, 410, 1-9.	6.2	8
76	Suppression of the Ag/Si surface conductivity transition temperature by organic adsorbates. Applied Physics Letters, 2011, 98, 052106.	3.3	7
77	Performance Improvement of CH3NH3PbI3 Perovskite Solar Cell by CH3SH Doping. Nanomaterials and Nanotechnology, 2016, 6, 24.	3.0	7
78	<i>In Situ</i> Patterning of Ultrasharp Dopant Profiles in Silicon. ACS Nano, 2017, 11, 1683-1688.	14.6	7
79	Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors. Physical Review Letters, 2018, 120, 046403.	7.8	7
80	Soft x-ray photoelectron spectroscopy of tin–phthalocyanine/GaAs(001)- 1 × 6 interface formation. Journal of Physics Condensed Matter, 2003, 15, S2741-S2748.	1.8	6
81	Adsorbate-Induced Modification of the Confining Barriers in a Quantum Box Array. ACS Nano, 2018, 12, 768-778.	14.6	6
82	Recent Progress with In Situ Characterization of Interfacial Structures under a Solid–Gas Atmosphere by HP-STM and AP-XPS. Materials, 2019, 12, 3674.	2.9	6
83	Low-Temperature Growth of Graphene on a Semiconductor. Journal of Physical Chemistry C, 2021, 125, 4243-4252.	3.1	6
84	Resonant photoemission spectroscopy for intermediate band materials. Applied Physics Letters, 2015, 107, 192104.	3.3	5
85	Degradation of the chemotherapy drug 5-fluorouracil on medical-grade silver surfaces. Applied Surface Science, 2018, 435, 1213-1219.	6.1	5
86	Phonon-induced linewidths of graphene electronic states. Physical Review B, 2018, 98, .	3.2	5
87	Microstructure Evolution of a Co/MnO Catalyst for Fischerâ€Tropsch Synthesis Revealed by ⟨i⟩In Situ⟨ i⟩ XAFS Studies. ChemCatChem, 2019, 11, 2187-2194.	3.7	5
88	A wavelengthâ€dispersive Xâ€ray spectrometer for in/ex situ resonant inelastic Xâ€ray scattering studies. X-Ray Spectrometry, 2020, 49, 251-259.	1.4	5
89	The occupied electronic structure of ultrathin boron doped diamond. Nanoscale Advances, 2020, 2, 1358-1364.	4.6	5
90	Extracting the near surface stoichiometry of BiFe0.5Mn0.5O3 thin films; a finite element maximum entropy approach. Surface Science, 2012, 606, 1771-1776.	1.9	4

#	Article	IF	Citations
91	Tautomerization of Thymine Using Ultraviolet Light. Langmuir, 2017, 33, 9666-9672.	3.5	4
92	Design of wide-range energy material beamline at the Shanghai Synchrotron Radiation Facility. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	3.4	4
93	Electron-magnon coupling and quasiparticle lifetimes on the surface of a topological insulator. Physical Review B, 2021, 104, .	3.2	4
94	Exploring the CO2 reduction reaction mechanism on Pt/TiO2 with the ambient-pressure X-ray photoelectron spectroscopy. Applied Surface Science, 2021, 568, 150933.	6.1	4
95	Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting Diodes (Adv. Funct. Mater. 45/2021). Advanced Functional Materials, 2021, 31, 2170331.	14.9	4
96	Thermal migration of alloying agents in aluminium. Materials Research Express, 2016, 3, 116501.	1.6	3
97	Revealing the Adsorption and Decomposition of EP-PTCDI on a Cerium Oxide Surface. ACS Omega, 2019, 4, 17939-17946.	3.5	3
98	Direct Synthesis of Semimetal Phthalocyanines on a Surface with Insights into Interfacial Properties. Journal of Physical Chemistry C, 2020, 124, 8247-8256.	3.1	3
99	Symmetrical dehalogenation of 2, 7-dibromopyrene on $Cu(1\ 1\ 1)$ with tunable intermediates and reaction paths. Applied Surface Science, 2021, 566, 150663.	6.1	3
100	Initial growth behavior of bismuth on Ag(111) and Au(111). Wuli Xuebao/Acta Physica Sinica, 2022, 71, 026101.	0.5	3
101	Diamond (111) surface reconstruction and epitaxial graphene interface. Physical Review B, 2022, 105, .	3.2	3
102	Publisher's Note: Kinks in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ïf</mml:mi></mml:math> Band of Graphene Induced by Electron-Phonon Coupling [Phys. Rev. Lett. 111 , 216806 (2013)]. Physical Review Letters, 2013, 111, .	7.8	2
103	Robustp-type doping of copper oxide using nitrogen implantation. Materials Research Express, 2017, 4, 075905.	1.6	2
104	Accelerated ageing of molybdenum oxide. Materials Research Express, 2017, 4, 115502.	1.6	2
105	Exploring the Adsorption Mechanism of Tetracene on Ag(110) by STM and Dispersion-Corrected DFT. Crystals, 2020, $10, 13$.	2.2	2
106	Avoiding degradation of chemotherapy drugs: is graphene the answer?. Nanomedicine, 2015, 10, 3307-3310.	3.3	1
107	Unveiling orbital coupling at the CoPc/Bi(111) surface by ab initio calculations and photoemission spectroscopy. RSC Advances, 2017, 7, 52143-52150.	3.6	1
108	<i>In Situ</i> Investigations of Structures Evolution of Mg Doped Zn ₄ Sb ₃ . Key Engineering Materials, 0, 727, 178-184.	0.4	0

#	Article	lF	CITATIONS
109	A Simplified Method for Patterning Graphene on Dielectric Layers. ACS Applied Materials & Dielectric Layers. AC	8.0	O