Markus A Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537261/publications.pdf

Version: 2024-02-01

58 3,401 25 54
papers citations h-index g-index

62 62 5522 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The lipid environment modulates cardiolipin and phospholipid constitution in wild type and tafazzinâ€deficient cells. Journal of Inherited Metabolic Disease, 2022, 45, 38-50.	3.6	7
2	PUFA-Induced Metabolic Enteritis as a Fuel for Crohn's Disease. Gastroenterology, 2022, 162, 1690-1704.	1.3	24
3	A proteomic survival predictor for COVID-19 patients in intensive care. , 2022, 1, e0000007.		28
4	Tricky Isomersâ€"The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Frontiers in Cell and Developmental Biology, 2022, 10, 864716.	3.7	12
5	Adaptations of the 3T3-L1 adipocyte lipidome to defective ether lipid catabolism uponÂAgmoÂknockdown. Journal of Lipid Research, 2022, 63, 100222.	4.2	1
6	Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biology, 2022, 54, 102353.	9.0	14
7	An international classification of inherited metabolic disorders (<scp>ICIMD</scp>). Journal of Inherited Metabolic Disease, 2021, 44, 164-177.	3.6	146
8	Fatty acyl availability modulates cardiolipin composition and alters mitochondrial function in HeLa cells. Journal of Lipid Research, 2021, 62, 100111.	4.2	14
9	When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping. Cell and Bioscience, 2021, 11, 54.	4.8	12
10	Novel ALDH3A2 mutations in structural and functional domains of FALDH causing diverse clinical phenotypes in Sjögren–Larsson syndrome patients. Human Mutation, 2021, 42, 1015-1029.	2.5	0
11	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	6.2	125
12	Interpreting phospholipid and cardiolipin profiles in rare mitochondrial diseases. Current Opinion in Systems Biology, 2021, 28, 100383.	2.6	4
13	Fatal attraction – The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiology of Aging, 2021, 107, 128-141.	3.1	11
14	The Emerging Physiological Role of AGMO 10 Years after Its Gene Identification. Life, 2021, 11, 88.	2.4	19
15	CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Reports, 2021, 37, 109769.	6.4	10
16	Amino Acid and Phospholipid Metabolism as an Indicator of Inflammation and Subtle Cardiomyopathy in Patients with Marfan Syndrome. Metabolites, 2021, 11, 805.	2.9	2
17	The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nature Metabolism, 2021, 3, 1521-1535.	11.9	29
18	Unequivocal Mapping of Molecular Ether Lipid Species by LC–MS/MS in Plasmalogen-Deficient Mice. Analytical Chemistry, 2020, 92, 11268-11276.	6.5	33

#	Article	IF	CITATIONS
19	The prognostic value of additional copies of 1q21 in multiple myeloma depends on the primary genetic event. American Journal of Hematology, 2020, 95, 1562-1571.	4.1	20
20	Phospholipid Acyl Chain Diversity Controls the Tissue-Specific Assembly of Mitochondrial Cardiolipins. Cell Reports, 2020, 30, 4281-4291.e4.	6.4	66
21	The <i>TMEM189</i> gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7792-7798.	7.1	79
22	Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease. Nature Communications, 2020, 11, 1775.	12.8	143
23	Targeted metabolomic analysis of serum phospholipid and acylcarnitine in the adult Fontan patient with a dominant left ventricle. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232091603.	2.5	14
24	Reply to  Do sulfate radicals really enable a non-enzymatic Krebs cycle precursor?'. Nature Ecology and Evolution, 2019, 3, 139-140.	7.8	5
25	Membrane Sphingolipids Regulate the Fitness and Antifungal Protein Susceptibility of Neurospora crassa. Frontiers in Microbiology, 2019, 10, 605.	3.5	22
26	Genotype and phenotype variability in Sjögren-Larsson syndrome. Human Mutation, 2019, 40, 177-186.	2.5	26
27	Molecular structural diversity of mitochondrial cardiolipins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4158-4163.	7.1	82
28	A novel assay for the introduction of the vinyl ether double bond into plasmalogens using pyrene-labeled substrates. Journal of Lipid Research, 2018, 59, 901-909.	4.2	17
29	Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts. Cell Systems, 2018, 7, 269-283.e6.	6.2	80
30	Biochemical Characterization of AGMO Variants Implicated in Relapses in Visceral Leishmaniasis. Journal of Infectious Diseases, 2018, 217, 1846-1847.	4.0	4
31	Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nature Ecology and Evolution, 2017, 1, 83.	7.8	88
32	Structural Evidence for a Role of the Multi-functional Human Glycoprotein Afamin in Wnt Transport. Structure, 2017, 25, 1907-1915.e5.	3.3	29
33	The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nature Communications, 2017, 8, 16018.	12.8	95
34	Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus. Scientific Reports, 2016, 6, 35306.	3.3	55
35	Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Science Advances, 2016, 2, e1501235.	10.3	65
36	Unbiased Metabolomic Investigation of Alzheimer's Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism. Journal of Proteome Research, 2016, 15, 608-618.	3.7	107

#	Article	IF	CITATIONS
37	Methionine Metabolism Alters Oxidative Stress Resistance (i>via i>the Pentose Phosphate Pathway. Antioxidants and Redox Signaling, 2016, 24, 543-547.	5.4	93
38	The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions. Biomolecules, 2015, 5, 2101-2122.	4.0	69
39	Self-establishing communities enable cooperative metabolite exchange in a eukaryote. ELife, 2015, 4, .	6.0	81
40	A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance. BMC Genetics, 2015, 16, 13.	2.7	7
41	Tetrahydrobiopterin and alkylglycerol monooxygenase substantially alter the murine macrophage lipidome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2431-2436.	7.1	50
42	Regulation of ribosomal DNA amplification by the TOR pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9674-9679.	7.1	74
43	The widespread role of non-enzymatic reactions in cellular metabolism. Current Opinion in Biotechnology, 2015, 34, 153-161.	6.6	105
44	Hyperpolarized [U- ² H, U- ¹³ C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells. Magnetic Resonance in Medicine, 2015, 74, 1543-1547.	3.0	38
45	The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews, 2015, 90, 927-963.	10.4	908
46	Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biology, 2014, 4, 130232.	3.6	83
47	A gatekeeper helix determines the substrate specificity of Sjögren–Larsson Syndrome enzyme fatty aldehyde dehydrogenase. Nature Communications, 2014, 5, 4439.	12.8	55
48	Nonâ€enzymatic glycolysis and pentose phosphate pathwayâ€like reactions in a plausible <scp>A</scp> rchean ocean. Molecular Systems Biology, 2014, 10, 725.	7.2	182
49	Expression of full-length human alkylglycerol monooxygenase and fragments in Escherichia coli. Pteridines, 2013, 24, 111-115.	0.5	1
50	Fatty aldehyde dehydrogenase, the enzyme downstream of tetrahydrobiopterin-dependent alkylglycerol monooxygenase. Pteridines, 2013, 24, 105-109.	0.5	3
51	First insights into structure-function relationships of alkylglycerol monooxygenase. Pteridines, 2013, 24, 99-103.	0.5	1
52	Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase. Biochemical Journal, 2012, 443, 279-286.	3.7	18
53	Studying fatty aldehyde metabolism in living cells with pyrene-labeled compounds. Journal of Lipid Research, 2012, 53, 1410-1416.	4.2	17
54	Monitoring of fatty aldehyde dehydrogenase by formation of pyrenedecanoic acid from pyrenedecanal. Journal of Lipid Research, 2010, 51, 1554-1559.	4.2	22

#	Article	IF	CITATIONS
55	Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13672-13677.	7.1	74
56	Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence. Biological Chemistry, 2009, 390, 3-10.	2.5	19
57	Primordial Krebs-cycle-like non-enzymatic reactions detected by mass spectrometry and nuclear magnetic resonance. Wellcome Open Research, 0, 2, 52.	1.8	3
58	1H-NMR as implemented in several origin of life studies artificially implies the absence of metabolism-like non-enzymatic reactions by being signal-suppressed. Wellcome Open Research, 0, 2, 52.	1.8	6