
MarlÃ"ne Dufresne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. International Journal of Molecular Sciences, 2020, 21, 8515.	4.1	26
2	Experimental pancreatic cancer develops in soft pancreas: novel leads for an individualized diagnosis by ultrafast elasticity imaging. Theranostics, 2019, 9, 6369-6379.	10.0	10
3	First-in-man Phase 1 Clinical Trial of Gene Therapy for Advanced Pancreatic Cancer: Safety, Biodistribution, and Preliminary Clinical Findings. Molecular Therapy, 2015, 23, 779-789.	8.2	93
4	Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16. Gastroenterology, 2015, 148, 1452-1465.	1.3	36
5	Pancreatic preneoplastic lesions plasma signatures and biomarkers based on proteome profiling of mouse models. British Journal of Cancer, 2015, 113, 1590-1598.	6.4	15
6	The E3 Ubiquitin Ligase Thyroid Hormone Receptor-interacting Protein 12 Targets Pancreas Transcription Factor 1a for Proteasomal Degradation. Journal of Biological Chemistry, 2014, 289, 35593-35604.	3.4	20
7	Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110î±. Genes and Development, 2014, 28, 2621-2635.	5.9	108
8	MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 11199.	3.3	40
9	Oxidative Stress Induced by Inactivation of TP53INP1 Cooperates with KrasG12D to Initiate and Promote Pancreatic Carcinogenesis in the Murine Pancreas. American Journal of Pathology, 2013, 182, 1996-2004.	3.8	34
10	The conditional expression of KRASG12D in mouse pancreas induces disorganization of endocrine islets prior the onset of ductal pre-cancerous lesions. Pancreatology, 2013, 13, 191-195.	1.1	4
11	Id3 modulates cellular localization of bHLH Ptf1â€p48 protein. International Journal of Cancer, 2011, 129, 295-306.	5.1	12
12	MicroRNA-21 Is Induced Early in Pancreatic Ductal Adenocarcinoma Precursor Lesions. Clinical Chemistry, 2010, 56, 603-612.	3.2	197
13	The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clinical Chemistry, 2010, 56, 1107-1118.	3.2	139
14	Evidence for Epithelial-Mesenchymal Transition in Adult Human Pancreatic Exocrine Cells. Journal of Histochemistry and Cytochemistry, 2010, 58, 807-823.	2.5	39
15	Murine Embryonic Stem Cell–Derived Pancreatic Acinar Cells Recapitulate Features of Early Pancreatic Differentiation. Gastroenterology, 2008, 135, 1301-1310.e5.	1.3	24
16	Involvement of Cholecystokinin 2 Receptor in Food Intake Regulation: Hyperphagia and Increased Fat Deposition in Cholecystokinin 2 Receptor-Deficient Mice. Endocrinology, 2007, 148, 1039-1049.	2.8	73
17	Cholecystokinin and Gastrin Receptors. Physiological Reviews, 2006, 86, 805-847.	28.8	421
18	An ITIM-like motif within the CCK2 receptor sequence required for interaction with SHP-2 and the activation of the AKT pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1098-1107.	4.1	18

Marlène Dufresne

#	Article	IF	CITATIONS
19	Partial Agonism, Neutral Antagonism, and Inverse Agonism at the Human Wild-Type and Constitutively Active Cholecystokinin-2 Receptors. Molecular Pharmacology, 2006, 69, 680-690.	2.3	19
20	Glycine-extended gastrin activates two independent tyrosine-kinases in upstream of p85/p110 phosphatidylinositol 3-kinase in human colonic tumour cells. World Journal of Gastroenterology, 2006, 12, 1859.	3.3	9
21	Mechanism for Src activation by the CCK2 receptor: Patho-physiological functions of this receptor in pancreas. World Journal of Gastroenterology, 2006, 12, 4498.	3.3	12
22	Transgenic expression of CCK2 receptors sensitizes murine pancreatic acinar cells to carcinogen-induced preneoplastic lesions formation. International Journal of Cancer, 2005, 115, 46-54.	5.1	12
23	Signaling Pathways Associated with Colonic Mucosa Hyperproliferation in Mice Overexpressing Gastrin Precursors. Cancer Research, 2005, 65, 2770-2777.	0.9	48
24	Essential Interaction of Egr-1 at an Islet-specific Response Element for Basal and Gastrin-dependent Glucagon Gene Transactivation in Pancreatic α-Cells. Journal of Biological Chemistry, 2005, 280, 7976-7984.	3.4	25
25	A Novel Mechanism for JAK2 Activation by a G Protein-coupled Receptor, the CCK2R. Journal of Biological Chemistry, 2005, 280, 10710-10715.	3.4	61
26	Molecular Mechanism Underlying Partial and Full Agonism Mediated by the Human Cholecystokinin-1 Receptor. Journal of Biological Chemistry, 2005, 280, 10664-10674.	3.4	27
27	Modeled Structure of a G-Protein-Coupled Receptor:  The Cholecystokinin-1 Receptor. Journal of Medicinal Chemistry, 2005, 48, 180-191.	6.4	43
28	5-(Tryptophylamino)-1,3-dioxoperhydropyrido[1,2-c]pyrimidine-Based Cholecystokinin Receptor Antagonists:Â Reversal of CCK1Receptor Subtype Selectivity toward CCK2Receptors. Journal of Medicinal Chemistry, 2004, 47, 5318-5329.	6.4	7
29	The G-protein-coupled CCK2 receptor associates with phospholipase CÎ ³ 1. FEBS Letters, 2004, 568, 89-93.	2.8	13
30	Expression of Cholecystokinin-2/Gastrin Receptor in the Murine Pancreas Modulates Cell Adhesion and Cell Differentiation in Vivo. American Journal of Pathology, 2004, 165, 2135-2145.	3.8	18
31	Tissue Plasminogen Activator in Murine Exocrine Pancreas Cancer. American Journal of Pathology, 2004, 165, 1129-1139.	3.8	31
32	Involvement of JAK2 upstream of the PI 3-kinase in cell–cell adhesion regulation by gastrin. Experimental Cell Research, 2004, 301, 128-138.	2.6	41
33	Mechanism of JAK2 activation by the G protein coupled receptor CCK2-R. Gastroenterology, 2003, 124, A78.	1.3	0
34	Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Pharmacogenetics and Genomics, 2002, 12, 23-30.	5.7	44
35	Expression of CCK2 receptors in the murine pancreas: Proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology, 2002, 122, 428-437.	1.3	73
36	Transgenic Mice Expressing Cholecystokinin 2 Receptors in the Pancreas. Basic and Clinical Pharmacology and Toxicology, 2002, 91, 321-326.	0.0	14

Marlène Dufresne

#	Article	IF	CITATIONS
37	The CCKB/gastrin receptor is coupled to the regulation of enzyme secretion, protein synthesis and p70 S6 kinase activity in acinar cells from ElasCCKB transgenic mice. FEBS Journal, 1999, 266, 1003-1010.	0.2	16
38	Exogenous CCK and gastrin stimulate pancreatic exocrine secretion via CCK-A but also via CCK-B/gastrin receptors in the calf. Pflugers Archiv European Journal of Physiology, 1999, 438, 86-93.	2.8	21
39	Transgenic CCK-B/gastrin receptor mediates murine exocrine pancreatic secretion. Gastroenterology, 1998, 115, 988-996.	1.3	47
40	Differential expression of the CCK-A and CCK-B/gastrin receptor genes in human cancers of the esophagus, stomach and colon. , 1997, 72, 931-936.		53
41	Molecular cloning, developmental expression and pharmacological characterization of the receptor in the calf pancreas. European Journal of Pharmacology, 1996, 297, 165-179.	3.5	26
42	The peripheral cholecystokinin receptors. , 1994, , 109-125.		0
43	Study of the states and populations of the rat pancreatic cholecystokinin receptor using the full peptide antagonist JMV 179. FEBS Journal, 1993, 212, 529-538.	0.2	22
44	The peripheral cholecystokinin receptors. FEBS Journal, 1993, 215, 513-529.	0.2	116
45	Peptide hormone—membrane interactions. Intervesicular transfer of lipophilic gastrin derivatives to artificial membranes and their bioactivities. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 235-242.	2.6	20
46	Biochemical Characterization of a Subtype Pancreatic Cholecystokinin Receptor and of its Agonist Binding Domain. Journal of Receptors and Signal Transduction, 1992, 12, 233-253.	1.2	9
47	Pharmacological and biochemical characterization of cholecystokinin/gastrin receptors in developing rat pancreas. Age-related expression of distinct receptor glycoforms. FEBS Journal, 1992, 204, 273-279.	0.2	19
48	Immune recognition of affinity-labelled cholecystokinin receptor. FEBS Journal, 1990, 191, 141-146.	0.2	4
49	On the Hypothetical Protein F154 of the TTV1 Virus from Thermoproteus tenax. Part III: Immunological Identification of the Protein with Anti-Peptide Antibodies. Biological Chemistry Hoppe-Seyler, 1990, 371, 43-48.	1.4	5
50	Muramyl-Peptide/Gastrin Conjugates as Potential Immunogens. Biological Chemistry Hoppe-Seyler, 1989, 370, 1209-1214.	1.4	3
51	A new probe for affinity labelling pancreatic cholecystokinin receptor with minor modification of its structure. FEBS Journal, 1989, 185, 397-403.	0.2	42
52	The amiloride sensitive Na+ /H+ antiport in guinea pig pancreatic acini. FEBS Letters, 1985, 187, 126-130.	2.8	21