Ana Benito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537134/publications.pdf

Version: 2024-02-01

53660 62479 7,273 184 45 80 citations h-index g-index papers 191 191 191 9335 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angewandte Chemie, 2022, 134 , .	1.6	2
2	Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
3	Effect of nanocellulose polymorphism on electrochemical analytical performance in hybrid nanocomposites with non-oxidized single-walled carbon nanotubes. Mikrochimica Acta, 2022, 189, 62.	2.5	10
4	Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes. Journal of Membrane Science, 2022, 652, 120490.	4.1	9
5	Functionalized carbon dots on TiO2 for perovskite photovoltaics and stable photoanodes for water splitting. International Journal of Hydrogen Energy, 2021, 46, 12180-12191.	3.8	15
6	Optical properties and carrier dynamics in Co-doped ZnO nanorods. Nanoscale Advances, 2021, 3, 214-222.	2.2	3
7	Carbon Nanostructures and Polysaccharides for Biomedical Materials. RSC Nanoscience and Nanotechnology, 2021, , 98-152.	0.2	O
8	In-situ reduction by Joule heating and measurement of electrical conductivity of graphene oxide in a transmission electron microscope. 2D Materials, 2021, 8, 031001.	2.0	16
9	Formation of one-dimensional quantum crystals of molecular deuterium inside carbon nanotubes. Carbon, 2021, 175, 141-154.	5.4	5
10	Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures. Nanomaterials, 2021, 11, 1435.	1.9	9
11	Detailed thermal reduction analyses of graphene oxide via in-situ TEM/EELS studies. Carbon, 2021, 178, 477-487.	5.4	24
12	Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications. Advances in Colloid and Interface Science, 2021, 292, 102420.	7.0	32
13	Rational description and modelling of the separation of nanotubes from solid nanoparticles in centrifugation processes. Carbon Trends, 2021, 5, 100084.	1.4	O
14	Nanoscale Charge Density and Dynamics in Graphene Oxide., 2021, 3, 1826-1831.		3
15	Hybrids of Reduced Graphene Oxide Aerogel and CNT for Electrochemical O2 Reduction. Catalysts, 2021, 11, 1404.	1.6	3
16	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	2.2	50
17	Towards high-efficient microsupercapacitors based on reduced graphene oxide with optimized reduction degree. Energy Storage Materials, 2020, 25, 740-749.	9.5	18
18	Differential properties and effects of fluorescent carbon nanoparticles towards intestinal theranostics. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110612.	2.5	5

#	Article	IF	CITATIONS
19	Ru supported on N-doped reduced graphene oxide aerogels with different N-type for alcohol selective oxidation. Molecular Catalysis, 2020, 484, 110737.	1.0	8
20	Inâ€Situ Growth and Immobilization of CdS Nanoparticles onto Functionalized MoS ₂ : Preparation, Characterization and Fabrication of Photoelectrochemical Cells. Chemistry - an Asian Journal, 2020, 15, 2350-2356.	1.7	4
21	Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal–Organic Framework Shells for Water-Splitting Photoanodes. ACS Applied Nano Materials, 2020, 3, 7781-7788.	2.4	29
22	Laser-Deposited Carbon Aerogel Derived from Graphene Oxide Enables NO ₂ -Selective Parts-per-Billion Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39541-39548.	4.0	7
23	Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions. Nanomaterials, 2020, 10, 1078.	1.9	8
24	Bottomâ€Up Synthesized MoS 2 Interfacing Polymer Carbon Nanodots with Electrocatalytic Activity for Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 6635-6642.	1.7	12
25	The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Physical Chemistry Chemical Physics, 2020, 22, 11474-11484.	1.3	21
26	Modification of Physicochemical Properties and Boosting Electrical Conductivity of Reduced Graphene Oxide Aerogels by Postsynthesis Treatment. Journal of Physical Chemistry C, 2020, 124, 13739-13752.	1.5	9
27	Optimizing Bacterial Cellulose Production Towards Materials for Water Remediation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 391-403.	0.2	5
28	Unique Properties and Behavior of Nonmercerized Type-II Cellulose Nanocrystals as Carbon Nanotube Biocompatible Dispersants. Biomacromolecules, 2019, 20, 3147-3160.	2.6	30
29	A tool box to ascertain the nature of doping and photoresponse in single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2019, 21, 4063-4071.	1.3	9
30	Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Applied Sciences, 2019, 1 , 1 .	1.5	55
31	Integrating Water-Soluble Polythiophene with Transition-Metal Dichalcogenides for Managing Photoinduced Processes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5947-5956.	4.0	11
32	The effect of graphene oxide reduction temperature on the kinetics of low-temperature sorption of hydrogen. Low Temperature Physics, 2019, 45, 422-426.	0.2	2
33	A versatile room-temperature method for the preparation of customized fluorescent non-conjugated polymer dots. Polymer, 2019, 177, 97-101.	1.8	14
34	Nanoscale J-aggregates of poly(3-hexylthiophene): key to electronic interface interactions with graphene oxide as revealed by KPFM. Nanoscale, 2019, 11, 11202-11208.	2.8	4
35	Reduced Graphene Oxide Aerogels with Controlled Continuous Microchannels for Environmental Remediation. ACS Applied Nano Materials, 2019, 2, 1210-1222.	2.4	33
36	Capacitive and Charge Transfer Effects of Singleâ€Walled Carbon Nanotubes in TiO ₂ Electrodes. ChemPhysChem, 2019, 20, 838-847.	1.0	5

#	Article	IF	CITATIONS
37	Chemical Postdeposition Treatments To Improve the Adhesion of Carbon Nanotube Films on Plastic Substrates. ACS Omega, 2019, 4, 2804-2811.	1.6	11
38	Photoactivity improvement of TiO2 electrodes by thin hole transport layers of reduced graphene oxide. Electrochimica Acta, 2019, 298, 279-287.	2.6	10
39	Conjugated Polymer Nanoparticle–Graphene Oxide Chargeâ€Transfer Complexes. Advanced Functional Materials, 2018, 28, 1707548.	7.8	26
40	Control of the microstructure and surface chemistry of graphene aerogels <i>via</i> pH and time manipulation by a hydrothermal method. Nanoscale, 2018, 10, 3526-3539.	2.8	68
41	Percolating Metallic Structures Templated on Laser-Deposited Carbon Nanofoams Derived from Graphene Oxide: Applications in Humidity Sensing. ACS Applied Nano Materials, 2018, 1, 1828-1835.	2.4	12
42	Carbon Nanofoam Supercapacitor Electrodes with Enhanced Performance Using a Water-Transfer Process. ACS Omega, 2018, 3, 15134-15139.	1.6	3
43	Graphene Sensors Operating at Room Temperature for Detection of Low Concentrations of NO <inf>2</inf> ., 2018,,.		0
44	Charge-transfer characteristics in carbon nanostructure/metal oxide photoelectrodes efficiently probed by hydrogen peroxide. Journal of Electroanalytical Chemistry, 2018, 828, 86-90.	1.9	3
45	Interfacing Transition Metal Dichalcogenides with Carbon Nanodots for Managing Photoinduced Energy and Charge-Transfer Processes. Journal of the American Chemical Society, 2018, 140, 13488-13496.	6.6	45
46	Supramolecular-Enhanced Charge Transfer within Entangled Polyamide Chains as the Origin of the Universal Blue Fluorescence of Polymer Carbon Dots. Journal of the American Chemical Society, 2018, 140, 12862-12869.	6.6	242
47	Unravelling the hydration mechanism in a multi-layered graphene oxide paper by in-situ X-ray scattering. Carbon, 2018, 137, 379-383.	5.4	10
48	Nanostructured Carbon Materials: Synthesis and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 177-191.	0.2	0
49	Electronic Interactions in Illuminated Carbon Dot/MoS ₂ Ensembles and Electrocatalytic Activity towards Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 10468-10474.	1.7	33
50	Preparation of Metallic and Semiconducting SWCNT Inks by a Simple Chromatographic Method: A Two-Parameter Study. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 229-238.	0.2	0
51	Graphene oxide–carbon nanotube hybrid assemblies: cooperatively strengthened OHâ√O hydrogen bonds and the removal of chemisorbed water. Chemical Science, 2017, 8, 4987-4995.	3.7	39
52	Electron Trap States and Photopotential of Nanocrystalline Titanium Dioxide Electrodes Filled with Singleâ€Walled Carbon Nanotubes. ChemElectroChem, 2017, 4, 2300-2307.	1.7	6
53	Self-Assembled Core–Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor–Acceptor Light-Harvesting Systems. ACS Applied Materials & Interfaces, 2017, 9, 44695-44703.	4.0	8
54	The effect of the thermal reduction on the kinetics of low-temperature 4He sorption and the structural characteristics of graphene oxide. Low Temperature Physics, 2017, 43, 383-389.	0.2	6

#	Article	IF	Citations
55	Intercalated water in multi-layered graphene oxide paper: an X-ray scattering study. Journal of Applied Crystallography, 2017, 50, 876-884.	1.9	6
56	The effect of the temperature of graphene oxide reduction on low-temperature sorption of 4He. Low Temperature Physics, 2016, 42, 57-59.	0.2	3
57	Revisiting Graphene Oxide Chemistry via Spatially-Resolved Electron Energy Loss Spectroscopy. Chemistry of Materials, 2016, 28, 3741-3748.	3.2	67
58	The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials. Applied Surface Science, 2016, 361, 213-220.	3.1	78
59	Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3, 24379-24388.	5.2	46
60	A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosensors and Bioelectronics, 2015, 69, 280-286.	5.3	107
61	Carbon nanotube-supported gold nanoparticles as efficient catalyst for the selective hydrogenation of nitroaromatic derivatives to anilines. Materials Today Communications, 2015, 3, 104-113.	0.9	20
62	A New Structural Model for Graphene Oxide and Reduced Graphene Oxide as Revealed by Core EELS and DFT. Microscopy and Microanalysis, 2014, 20, 1774-1775.	0.2	2
63	Electrochemical Grafting of Reduced Graphene Oxide with Polydiphenylamine Doped with Heteropolyanions and Its Optical Properties. Journal of Physical Chemistry C, 2014, 118, 25704-25717.	1.5	15
64	Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide. Carbon, 2014, 79, 590-604.	5.4	69
65	Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosensors and Bioelectronics, 2014, 54, 553-557.	5.3	147
66	The effect of gamma-irradiation on few-layered graphene materials. Applied Surface Science, 2014, 301, 264-272.	3.1	104
67	Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions. Nanoscale, 2013, 5, 10189.	2.8	29
68	Combination of two dispersants as a valuable strategy to prepare improved poly(vinyl) Tj ETQq0 0 0 rgBT /Overloo	ck _{3.8} 0 Tf 50	0 222 Td (alc
69	Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon, 2013, 52, 363-371.	5.4	232
70	High catalytic performance of palladium nanoparticles supported on multiwalled carbon nanotubes in alkene hydrogenation reactions. New Journal of Chemistry, 2013, 37, 1968.	1.4	24
71	Sorption of 4He, H2, Ne, N2, CH4, and Kr impurities in graphene oxide at low temperatures. Quantum effects. Low Temperature Physics, 2013, 39, 1090-1095.	0.2	9
72	Reduced Graphene Oxide Films as Solid Transducers in Potentiometric All-Solid-State Ion-Selective Electrodes. Journal of Physical Chemistry C, 2012, 116, 22570-22578.	1.5	103

#	Article	IF	CITATIONS
73	Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. Journal of Materials Chemistry, 2012, 22, 21285.	6.7	58
74	The effect of ultra-thin graphite on the morphology and physical properties of thermoplastic polyurethane elastomer composites. Composites Science and Technology, 2012, 72, 1595-1601.	3.8	55
75	Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon, 2012, 50, 835-844.	5.4	204
76	Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex. Journal of Physical Chemistry C, 2011, 115, 10468-10474.	1.5	104
77	One-step microwave synthesis of palladium–carbon nanotube hybrids with improved catalytic performance. Carbon, 2011, 49, 652-658.	5.4	54
78	Platelet-like catalyst design for high yield production of multi-walled carbon nanotubes by catalytic chemical vapor deposition. Carbon, 2011, 49, 2483-2491.	5.4	23
79	Processing dependency of percolation threshold of MWCNTs in a thermoplastic elastomeric block copolymer. Polymer, 2011, 52, 1788-1796.	1.8	29
80	Charge transport properties of water dispersible multiwall carbon nanotube-polyaniline composites. Journal of Applied Physics, 2010, 107, 103719.	1.1	32
81	Carbon Nanotube Effect on Polyaniline Morphology in Water Dispersible Composites. Journal of Physical Chemistry B, 2010, 114, 1579-1585.	1.2	64
82	Processing Route to Disentangle Multi-Walled Carbon Nanotube Towards Ceramic Composite. Journal of Nanoscience and Nanotechnology, 2009, 9, 6164-6170.	0.9	3
83	Block Copolymer Assisted Dispersion of Single Walled Carbon Nanotubes and Integration into a Trifunctional Epoxy. Journal of Nanoscience and Nanotechnology, 2009, 9, 6104-6112.	0.9	11
84	Crystalline Transformations in Nylon-6/Single-Walled Carbon Nanotube Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 6120-6126.	0.9	14
85	Nanofibrilar Polyaniline: Direct Route to Carbon Nanotube Water Dispersions of High Concentration. Macromolecular Rapid Communications, 2009, 30, 418-422.	2.0	35
86	Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD. Carbon, 2009, 47, 998-1004.	5.4	27
87	Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nanotube growth. Carbon, 2009, 47, 1989-2001.	5.4	27
88	Non-Specific Adsorption of Streptavidin on Single Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6149-6156.	0.9	4
89	Nanofibrilar-Polyaniline/Carbon Nanotube Composites: Aqueous Dispersions and Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 6157-6163.	0.9	7
90	Selected Peer-Reviewed Articles from the 2nd International Conference on the Chemistry on Carbon Nanotubes (ChemOnTubes 2008). Journal of Nanoscience and Nanotechnology, 2009, 9, 6013-6014.	0.9	0

#	Article	IF	Citations
91	Carbon Nanotube Composite Materials: Opportunities and Processing Issues. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 181-198.	0.2	2
92	The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites. Carbon, 2008, 46, 1909-1917.	5.4	64
93	Carbon Nanotube Mediated Reduction in Optical Activity in Polyaniline Composite Materials. Journal of Physical Chemistry C, 2008, 112, 1441-1445.	1.5	15
94	Carbon nanotube networks as gas sensors for NO2 detection. Talanta, 2008, 77, 758-764.	2.9	117
95	Novel gas sensors based on carbon nanotube networks. Journal of Physics: Conference Series, 2008, 127, 012012.	0.3	3
96	Carbon Nanotubes: From Fundamental Nanoscale Objects Towards Functional Nanocomposites and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 101-119.	0.2	9
97	FTIR and Thermogravimetric Analysis of Biotin-Functionalized Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3473-3476.	0.9	15
98	Multi-Walled Carbon Nanotube Networks As Gas Sensors for NO2 Detection., 2007,,.		1
99	Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption. Journal of Alloys and Compounds, 2007, 436, 294-297.	2.8	25
100	CVD production of double-wall and triple-wall carbon nanotubes. Diamond and Related Materials, 2007, 16, 1087-1090.	1.8	9
101	NO2 detection with Single Walled Carbon Nanotube Networks. , 2007, , .		3
102	Important parameters for the catalytic nanoparticles formation towards the growth of carbon nanotube aligned arrays. Diamond and Related Materials, 2007, 16, 1082-1086.	1.8	14
103	Novel selective sensors based on carbon nanotube films for hydrogen detection. Sensors and Actuators B: Chemical, 2007, 122, 75-80.	4.0	99
104	Towards helical and Y-shaped carbon nanotubes: the role of sulfur in CVD processes. Nanotechnology, 2006, 17, 4292-4299.	1.3	30
105	Synthesis and Properties of Optically Active Polyaniline Carbon Nanotube Composites. Macromolecules, 2006, 39, 7324-7332.	2.2	63
106	Aligned carbon nanotubes grown on alumina and quartz substrates by a simple thermal CVD process. Diamond and Related Materials, 2006, 15, 1059-1063.	1.8	34
107	Hydrogen Capacity of Palladium-Loaded Carbon Materials. Journal of Physical Chemistry B, 2006, 110, 6643-6648.	1.2	138
108	Carbon nanotube growth on cobalt-sprayed substrates by thermal CVD. Materials Science and Engineering C, 2006, 26, 1185-1188.	3.8	51

#	Article	IF	Citations
109	Polyazomethine/carbon nanotube composites. Materials Science and Engineering C, 2006, 26, 1198-1201.	3.8	15
110	Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts. Journal of Materials Research, 2006, 21, 2841-2846.	1.2	20
111	Ni–Y/Mo catalyst for the large-scale CVD production of multi-wall carbon nanotubes. Carbon, 2005, 43, 3034-3037.	5.4	16
112	Soluble Self-Aligned Carbon Nanotube/Polyaniline Composites. Advanced Materials, 2005, 17, 278-281.	11.1	171
113	Influence of molybdenum on the chemical vapour deposition production of carbon nanotubes. Nanotechnology, 2005, 16, S224-S229.	1.3	41
114	Sprayed Carbon Nanotube Thin Films as Hydrogen Sensors. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
115	Mechanical Characterization of Carbon Nanotube Composite Materials. Mechanics of Advanced Materials and Structures, 2005, 12, 13-19.	1.5	44
116	Optically Active Polymer Carbon Nanotube Composite. Journal of Physical Chemistry B, 2005, 109, 22725-22729.	1.2	47
117	Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals, 2005, 148, 15-19.	2.1	183
118	A soluble and highly functional polyaniline–carbon nanotube composite. Nanotechnology, 2005, 16, S150-S154.	1.3	94
119	Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology, 2004, 15, 1503-1508.	1.3	48
120	Enhanced hydrogen adsorption on single-wall carbon nanotubes by sample reduction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 120-123.	1.7	29
121	Hydrogen adsorption studies on single wall carbon nanotubes. Carbon, 2004, 42, 1243-1248.	5.4	154
122	Porosity, Surface Area, Surface Energy, and Hydrogen Adsorption in Nanostructured Carbons. Journal of Physical Chemistry B, 2004, 108, 15820-15826.	1.2	112
123	Carbon nanotube Y junctions: growth and properties. Diamond and Related Materials, 2004, 13, 241-249.	1.8	69
124	Single-Walled Carbon Nanotubes as Electrodes in Supercapacitors. Journal of the Electrochemical Society, 2004, 151, A831.	1.3	118
125	Cambios inducidos en nanotubos de carbono de capa única durante los procesos de purificación. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 524-526.	0.9	0
126	Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon, 2003, 41, 2247-2256.	5.4	333

#	Article	IF	Citations
127	Synthesis and characterization of new polyaniline/nanotube composites. Materials Science and Engineering C, 2003, 23, 87-91.	3.8	105
128	STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method. Materials Science and Engineering C, 2003, 23, 561-564.	3.8	14
129	Modifications of single-wall carbon nanotubes upon oxidative purification treatments. Nanotechnology, 2003, 14, 691-695.	1.3	102
130	Evolution of multiwalled carbon-nanotube/SiO2composites via laser treatment. Nanotechnology, 2003, 14, 184-187.	1.3	23
131	Incorporation of Multi Wall Carbon Nanotubes into Glass-Surfaces via Laser-Treatment. Materials Research Society Symposia Proceedings, 2003, 772, 281.	0.1	1
132	Performing current versus voltage measurements of single-walled carbon nanotubes using scanning force microscopy. Applied Physics Letters, 2002, 80, 1462-1464.	1.5	46
133	Microwave single walled carbon nanotubes purification. Chemical Communications, 2002, , 1000-1001.	2.2	65
134	Calculation of the charge spreading along a carbon nanotube seen in scanning tunnelling microscopy (STM). Diamond and Related Materials, 2002, 11, 961-963.	1.8	3
135	Production of carbon nanotubes: the light approach. Carbon, 2002, 40, 1685-1695.	5.4	56
136	Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM). Chemical Physics Letters, 2002, 365, 338-342.	1.2	26
137	Synthesis of a new polyaniline/nanotube composite: "in-situ―polymerisation and charge transfer through site-selective interaction. Chemical Communications, 2001, , 1450-1451.	2.2	457
138	Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials. Nanotechnology, 2001, 12, 147-151.	1.3	21
139	Visualization of single-walled carbon nanotubes electrical networks by scanning force microspy. Applied Physics Letters, 2001, 79, 2979-2981.	1.5	22
140	The influence of the target composition in the structural characteristics of single-walled carbon nanotubes produced by laser ablation. Synthetic Metals, 2001, 121, 1193-1194.	2.1	10
141	Charge spreading effects during 3D tunneling through a supported carbon nanotube. AIP Conference Proceedings, 2001, , .	0.3	1
142	Study of parameters important for the growth of single wall carbon nanotubes. Optical Materials, 2001, 17, 331-334.	1.7	11
143	Electrical characterization of single-walled carbon nanotubes with Scanning Force Microscopy. Materials Science and Engineering C, 2001, 15, 149-151.	3.8	14
144	Hyperfine and Magnetic Characterization of Fe Particles Hosted in Carbon Nanocapsules. Hyperfine Interactions, 2001, 134, 103-108.	0.2	1

#	Article	IF	CITATIONS
145	Mössbauer and magnetic characterisation of carbon-coated small iron particles. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1930-1932.	1.0	19
146	Diameter dependence of Raman intensities for single-wall carbon nanotubes. Physical Review B, 2001, 63, .	1.1	35
147	Mechanical and Electrical Properties of Nanosized Contacts on Single-Walled Carbon Nanotubes. Advanced Materials, 2000, 12, 573-576.	11.1	37
148	Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation. Carbon, 2000, 38, 1445-1451.	5.4	61
149	Single-walled carbon nanotubes produced by cw CO 2 -laser ablation: study of parameters important for their formation. Applied Physics A: Materials Science and Processing, 2000, 70, 145-151.	1.1	39
150	Single-walled carbon nanotubes formation with a continuous CO 2 -laser: experiments and theory. Applied Physics A: Materials Science and Processing, 2000, 70, 161-168.	1,1	21
151	Diameter distribution of single wall carbon nanotubes in nanobundles. European Physical Journal B, 2000, 18, 201-205.	0.6	109
152	Mechanical and Electrical Properties of Nanosized Contacts on Single-Walled Carbon Nanotubes., 2000, 12, 573.		1
153	Production of bundles of single walled nanotubes by a simple laser ablation technique. , 1999, , .		0
154	Structure and vibrational properties of single wall carbon nanotubes. Synthetic Metals, 1999, 103, 2537-2539.	2.1	1
155	Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites. Synthetic Metals, 1999, 103, 2510-2512.	2.1	71
156	Single-walled carbon nanotubes produced by laser ablation under different inert atmospheres. Synthetic Metals, 1999, 103, 2490-2491.	2.1	11
157	Upgrading of a Petroleum Residue. Kinetics of Conradson Carbon Residue Conversion. Industrial & Engineering Chemistry Research, 1999, 38, 938-943.	1.8	18
158	Solar synthesis of single wall carbon nanotubes. , 1999, , .		0
159	Structures of soot generated by laser induced pyrolysis of metal-graphite composite targets. Carbon, 1998, 36, 525-528.	5 . 4	11
160	Carbon nanotubes production by catalytic pyrolysis of benzene. Carbon, 1998, 36, 681-683.	5.4	95
161	Production of high-density single-walled nanotube material by a simple laser-ablation method. Chemical Physics Letters, 1998, 292, 587-593.	1.2	228
162	Kinetics of Conradson Carbon Residue Conversion in the Catalytic Hydroprocessing of a Maya Residue. Industrial & Engineering Chemistry Research, 1998, 37, 11-17.	1.8	38

#	Article	IF	CITATIONS
163	Kinetics of Sulfur Removal from a Liquid Coal Residue in Thermal, Hydrothermal, and Hydrocatalytic Cracking. Energy & Samp; Fuels, 1998, 12, 365-370.	2.5	8
164	Raman Investigation of Singlewalled Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 1998, 322, 71-78.	0.3	2
165	Raman studies of singlewalled nanotubes. , 1998, , .		O
166	Molecular dynamics of single wall nanotubes. , 1998, , .		0
167	Kinetics of asphaltene hydroconversion. Fuel, 1997, 76, 899-905.	3.4	18
168	The structure of fullerene compounds. Journal of Molecular Structure, 1997, 436-437, 1-9.	1.8	10
169	Thermal cracking of coal residues: Kinetics of asphaltene decomposition. Fuel, 1997, 76, 871-877.	3.4	84
170	Kinetics of asphaltene hydroconversion. Fuel, 1997, 76, 907-911.	3.4	24
171	Catalytic Hydrocracking of an Asphaltenic Coal Residue. Energy & Samp; Fuels, 1996, 10, 1235-1240.	2.5	12
172	Upgrading of an Asphaltenic Coal Residue:Â Thermal Hydroprocessing. Energy & 201-408.	2.5	14
173	Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes. Chemical Physics Letters, 1996, 257, 576-582.	1.2	223
174	Synthesis and characterisation of the methanofullerenes, C60(CHCN) and C60(CBr2). Tetrahedron Letters, 1996, 37, 1085-1086.	0.7	31
175	Hydrocessing of an asphaltenic coal residue. Coal Science and Technology, 1995, , 1467-1470.	0.0	0
176	Application of petroleum processing technology to the upgrading of coal syncrude. Fuel, 1995, 74, 32-36.	3.4	10
177	Visbreaking of an asphaltenic coal residue. Fuel, 1995, 74, 922-927.	3.4	18
178	DEASPHALTING AND CHARACTERIZATION OF A SYNCRUDE OBTAINED BY DIRECT LIQUEFACTION OF A SPANISH SUBBITUMINOUS COAL. Petroleum Science and Technology, 1994, 12, 1509-1538.	0.2	1
179	Transport fuels from two-stage coal liquefaction. International Journal of Energy Research, 1994, 18, 257-265.	2.2	5
180	INVESTIGATION OF THE EXISTENCE OF COAL MATRIX EFFECTS ON THE HYDROLIQUEFACTION OF VITRINITES DERIVED FROM LOW RANK SPANISH COALS. Petroleum Science and Technology, 1994, 12, 1-20.	0.7	0

Ana Benito

#	Article	IF	CITATIONS
181	Two-stage liquefaction of a Spanish subbituminous coal. Fuel Processing Technology, 1993, 33, 159-173.	3.7	19
182	Nanoscale Photogenerated Charge-Transfer Study of P3HT Nanoparticles /Graphene Oxide Complexes , 0, , .		0
183	Slow Charge Relaxation in Highly Disordered Electronic Systems studied by Electrostatic Scanning Force Microscopy. , 0, , .		O
184	Nanoscale Photogenerated Charge-Transfer Study of P3HT Nanoparticles /Graphene Oxide Complexes , 0, , .		O