
Na Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6537110/publications.pdf Version: 2024-02-01

ΝΛΤΙΛΝ

#	Article	IF	CITATIONS
1	Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science, 2007, 316, 732-735.	12.6	2,838
2	Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chemical Society Reviews, 2011, 40, 4167.	38.1	755
3	Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 19801-19817.	3.1	536
4	Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation. Journal of the American Chemical Society, 2010, 132, 7580-7581.	13.7	447
5	Highâ€Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation. Angewandte Chemie - International Edition, 2010, 49, 411-414.	13.8	310
6	In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochimica Acta, 2010, 55, 7995-7999.	5.2	198
7	Nanoparticlecatalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discussions, 2008, 140, 81-92.	3.2	170
8	Alloy tetrahexahedral Pd–Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chemical Science, 2012, 3, 1157.	7.4	152
9	Electrochemical preparation of Pd nanorods with high-index facets. Chemical Communications, 2009, , 1502.	4.1	151
10	Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy, 2017, 33, 65-71.	16.0	139
11	High-Index-Facet- and High-Surface-Energy Nanocrystals of Metals and Metal Oxides as Highly Efficient Catalysts. Joule, 2020, 4, 2562-2598.	24.0	136
12	Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage. Accounts of Chemical Research, 2016, 49, 2569-2577.	15.6	131
13	Electrochemically Shape-Controlled Synthesis in Deep Eutectic Solvents—A New Route to Prepare Pt Nanocrystals Enclosed by High-Index Facets with High Catalytic Activity. Journal of Physical Chemistry C, 2012, 116, 2040-2044.	3.1	119
14	Synthesis of Convex Hexoctahedral Pt Micro/Nanocrystals with High-Index Facets and Electrochemistry-Mediated Shape Evolution. Journal of the American Chemical Society, 2013, 135, 18754-18757.	13.7	117
15	Electrochemically Seed-Mediated Synthesis of Sub-10 nm Tetrahexahedral Pt Nanocrystals Supported on Graphene with Improved Catalytic Performance. Journal of the American Chemical Society, 2016, 138, 5753-5756.	13.7	99
16	Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity. Chemical Communications, 2006, , 4090.	4.1	96
17	Electrochemically shape-controlled synthesis of trapezohedral platinum nanocrystals with high electrocatalytic activity. Chemical Communications, 2012, 48, 9531.	4.1	95
18	Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83.	25.5	87

NA TIAN

#	Article	IF	CITATIONS
19	Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chemical Communications, 2015, 51, 17092-17095.	4.1	85
20	Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 355-363.	11.2	79
21	Tetrahexahedral Pt Nanocrystal Catalysts Decorated with Ru Adatoms and Their Enhanced Activity in Methanol Electrooxidation. ACS Catalysis, 2012, 2, 708-715.	11.2	76
22	Pd Nanocrystals with Continuously Tunable High-Index Facets as a Model Nanocatalyst. ACS Catalysis, 2019, 9, 3144-3152.	11.2	68
23	Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO ₂ electroreduction to alcohols. Chemical Communications, 2017, 53, 8085-8088.	4.1	64
24	Promoting Ethylene Selectivity from CO ₂ Electroreduction on CuO Supported onto CO ₂ Capture Materials. ChemSusChem, 2018, 11, 881-887.	6.8	61
25	Pt-group bimetallic nanocrystals with high-index facets as high performance electrocatalysts. Faraday Discussions, 2013, 162, 77.	3.2	50
26	Pt nanoparticle netlike-assembly as highly durable and highly active electrocatalyst for oxygen reduction reaction. Chemical Communications, 2011, 47, 3407.	4.1	48
27	Excavated cubic platinum–iridium alloy nanocrystals with high-index facets as highly efficient electrocatalysts in N ₂ fixation to NH ₃ . Chemical Communications, 2019, 55, 9335-9338.	4.1	48
28	Designing Pt-Based Electrocatalysts with High Surface Energy. ACS Energy Letters, 2017, 2, 1892-1900.	17.4	46
29	Shape transformation from Pt nanocubes to tetrahexahedra with size near 10nm. Electrochemistry Communications, 2012, 22, 61-64.	4.7	44
30	In situ FTIR spectroscopic studies of ethylene glycol electrooxidation on Pd electrode in alkaline solution: The effects of concentration. Journal of Electroanalytical Chemistry, 2013, 688, 165-171.	3.8	43
31	Facets and surface relaxation of tetrahexahedral platinum nanocrystals. Applied Physics Letters, 2007, 91, .	3.3	41
32	Hydrogen adsorption-mediated synthesis of concave Pt nanocubes and their enhanced electrocatalytic activity. Nanoscale, 2016, 8, 11559-11564.	5.6	39
33	Intermetallic PtBi Nanoplates with High Catalytic Activity towards Electroâ€oxidation of Formic Acid and Clycerol. ChemElectroChem, 2020, 7, 239-245.	3.4	37
34	Fluorescence detection of hydroxyl radical generated from oxygen reduction on Fe/N/C catalyst. Science China Chemistry, 2020, 63, 198-202.	8.2	32
35	Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent. Nano Research, 2016, 9, 3547-3557.	10.4	31
36	Seeds and Potentials Mediated Synthesis of High-Index Faceted Gold Nanocrystals with Enhanced Electrocatalytic Activities. Langmuir, 2017, 33, 6991-6998.	3.5	30

NA TIAN

#	Article	IF	CITATIONS
37	High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer. Journal of the American Chemical Society, 2022, 144, 9292-9301.	13.7	29
38	Roughening of Pt nanoparticles induced by surface-oxide formation. Physical Chemistry Chemical Physics, 2013, 15, 2268.	2.8	21
39	Tetrahexahedral PdRh nanocrystals with tunable composition as a highly efficient electrocatalyst for ethylene glycol oxidation. Journal of Materials Chemistry A, 2021, 9, 11049-11055.	10.3	21
40	Surface structure effects of platinum-based catalysts for oxygen reduction reaction. Current Opinion in Electrochemistry, 2017, 4, 76-82.	4.8	19
41	Evolution of Cu single atom catalysts to nanoclusters during CO ₂ reduction to CO. Chemical Communications, 2022, 58, 2488-2491.	4.1	19
42	Shape transformation of {hk0}-faceted Pt nanocrystals from a tetrahexahedron into a truncated ditetragonal prism. Chemical Communications, 2017, 53, 3236-3238.	4.1	17
43	Helical PdPtAu nanowires bounded with high-index facets selectively switch the pathway of ethanol electrooxidation. Journal of Materials Chemistry A, 2022, 10, 10902-10908.	10.3	17
44	Shape Evolution of Platinum Nanocrystals by Electrochemistry. Electrochimica Acta, 2014, 140, 345-351.	5.2	16
45	Influence of transition metal modification of oxide-derived Cu electrodes in electroreduction of CO2. Chinese Journal of Catalysis, 2016, 37, 1070-1075.	14.0	13
46	High Catalytic Activity of Pt(100) for CH ₄ Electrochemical Conversion. ACS Catalysis, 2019, 9, 10159-10165.	11.2	13
47	N, P Dual-Doped Porous Carbon Nanosheets for High-Efficiency CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 1880-1887.	6.7	12
48	Electrochemical synthesis of Tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. Journal of Electroanalytical Chemistry, 2022, 907, 116022.	3.8	12
49	High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination. Physical Chemistry Chemical Physics, 2022, 24, 3896-3904.	2.8	10
50	Improved Stability of Octahedral PtCu by Rh Doping for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2425-2430.	3.4	7
51	Interaction of citrate with Pt(100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis. Science China Chemistry, 2012, 55, 2353-2358.	8.2	6
52	Collision Incidents of Single Tetrahexahedral Platinum Nanocrystals Recorded by a Carbon Nanoelectrode. ChemElectroChem, 2018, 5, 3068-3072.	3.4	6
53	Shape transformations of Pt nanocrystals enclosed with high-index facets and low-index facets. CrystEngComm, 2021, 23, 6655-6660.	2.6	5
54	Kinetics of dissociative adsorption of formic acid on electrodes of tetrahexahedral platinum nanocrystals. Science in China Series B: Chemistry, 2009, 52, 1660-1665.	0.8	2

#	Article	IF	CITATIONS
55	Fluorescence enhancement mediated by high-index-faceted Pt nanocrystals: roles of crystal structures. Chemical Communications, 2018, 54, 2016-2019.	4.1	2
56	Kinetics of thiocyanate orientation conversion on Pt surface studied by in situ step-scan time-resolved microscope FTIR spectroscopy. Science Bulletin, 2013, 58, 622-626.	1.7	0