Pierre Boursot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/653689/publications.pdf

Version: 2024-02-01

71102 5,907 82 41 citations h-index papers

g-index 88 88 88 4596 docs citations times ranked citing authors all docs

79698

73

#	Article	IF	CITATIONS
1	The evolutionary pathways for local adaptation in mountain hares. Molecular Ecology, 2022, 31, 1487-1503.	3.9	8
2	The Legacy of Recurrent Introgression during the Radiation of Hares. Systematic Biology, 2021, 70, 593-607.	5.6	47
3	Androgen-binding protein (Abp) evolutionary history: Has positive selection caused fixation of different paralogs in different taxa of the genus Mus?. Genome Biology and Evolution, 2021, 13, .	2.5	1
4	An Annotated Draft Genome of the Mountain Hare (Lepus timidus). Genome Biology and Evolution, 2020, 12, 3656-3662.	2.5	13
5	The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biology, 2018, 19, 91.	8.8	71
6	Range expansion underlies historical introgressive hybridization in the Iberian hare. Scientific Reports, 2017, 7, 40788.	3.3	35
7	Do changes in gene expression contribute to sexual isolation and reinforcement in the house mouse?. Molecular Ecology, 2017, 26, 5189-5202.	3.9	18
8	Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mammalian Genome, 2017, 28, 416-425.	2.2	25
9	Seeking signatures of reinforcement at the genetic level: a hitchhiking mapping and candidate gene approach in the house mouse. Molecular Ecology, 2015, 24, 4222-4237.	3.9	24
10	Diversity of Prdm9 Zinc Finger Array in Wild Mice Unravels New Facets of the Evolutionary Turnover of this Coding Minisatellite. PLoS ONE, 2014, 9, e85021.	2.5	64
11	The Elusive Nature of Adaptive Mitochondrial DNA Evolution of an Arctic Lineage Prone to Frequent Introgression. Genome Biology and Evolution, 2014, 6, 886-896.	2.5	78
12	Sexual selection against natural hybrids may contribute to reinforcement in a house mouse hybrid zone. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132733.	2.6	32
13	Home-loving boreal hare mitochondria survived several invasions in Iberia: the relative roles of recurrent hybridisation and allele surfing. Heredity, 2014, 112, 265-273.	2.6	30
14	Adaptive Evolution and Effective Population Size in Wild House Mice. Molecular Biology and Evolution, 2012, 29, 2949-2955.	8.9	73
15	The south-eastern house mouse Mus musculus castaneus (Rodentia: Muridae) is a polytypic subspecies. Biological Journal of the Linnean Society, 2012, 107, 295-306.	1.6	34
16	Recurrent Introgression of Mitochondrial DNA Among Hares (Lepus spp.) Revealed by Species-Tree Inference and Coalescent Simulations. Systematic Biology, 2012, 61, 367.	5.6	111
17	Isolation and gene flow: inferring the speciation history of European house mice. Molecular Ecology, 2011, 20, 5248-5264.	3.9	99
18	INTERSPECIFIC X-CHROMOSOME AND MITOCHONDRIAL DNA INTROGRESSION IN THE IBERIAN HARE: SELECTION OR ALLELE SURFING?. Evolution; International Journal of Organic Evolution, 2011, 65, 1956-1968.	2.3	29

#	Article	IF	CITATIONS
19	Subspecific origin and haplotype diversity in the laboratory mouse. Nature Genetics, 2011, 43, 648-655.	21.4	439
20	Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1034-1043.	2.6	94
21	The genomic legacy from the extinct <i>Lepus timidus</i> to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Molecular Ecology, 2009, 18, 2643-2658.	3.9	69
22	The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus <i>Lepus</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2831-2839.	4.0	111
23	The evolutionary fate of recently duplicated retrogenes in mice. Journal of Evolutionary Biology, 2007, 20, 617-626.	1.7	14
24	The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Molecular Ecology, $2006, 16, 605-618$.	3.9	95
25	Hares on thin ice: Introgression of mitochondrial DNA in hares and its implications for recent phylogenetic analyses. Molecular Phylogenetics and Evolution, 2006, 40, 640-641.	2.7	40
26	Mouse SNPs for evolutionary biology: Beware of ascertainment biases. Genome Research, 2006, 16, 1191-1192.	5.5	17
27	Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Molecular Ecology, 2005, 14, 2459-2464.	3.9	183
28	Postzygotic isolation between the two European subspecies of the house mouse: estimates from fertility patterns in wild and laboratory-bred hybrids. Biological Journal of the Linnean Society, 2005, 84, 379-393.	1.6	116
29	Testing for selection on the androgen-binding protein in the Danish mouse hybrid zone. Biological Journal of the Linnean Society, 2005, 84, 447-459.	1.6	50
30	Inferences of selection and migration in the Danish house mouse hybrid zone. Biological Journal of the Linnean Society, 2005, 84, 593-616.	1.6	104
31	Characterization of a centromeric marker on mouse Chromosome 11 and its introgression in a domesticus/musculus hybrid zone. Mammalian Genome, 2004, 15, 924-934.	2.2	9
32	Mouse biodiversity in the genomic era. Cytogenetic and Genome Research, 2004, 105, 385-394.	1.1	15
33	B1 insertions as easy markers for mouse population studies. Mammalian Genome, 2003, 14, 359-366.	2.2	18
34	Recombination explains isochores in mammalian genomes. Trends in Genetics, 2003, 19, 128-130.	6.7	111
35	Identification and characterization of t haplotypes in wild mice populations using molecular markers. Genetical Research, 2003, 81, 103-114.	0.9	22
36	DetSel 1.0: A Computer Program to Detect Markers Responding to Selection., 2003, 94, 429-431.		81

#	Article	IF	CITATIONS
37	Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S124-7.	2.6	63
38	The Complex History of a Gene Proposed to Participate in a Sexual Isolation Mechanism in House Mice. Molecular Biology and Evolution, 2002, 19, 462-471.	8.9	50
39	Mus Musculus. , 2001, , 1259-1261.		O
40	Interpretation of Variation Across Marker Loci as Evidence of Selection. Genetics, 2001, 158, 1811-1823.	2.9	242
41	A New Method for Locating Changes in a Tree Reveals Distinct Nucleotide Polymorphism vs Divergence Patterns in Mouse Mitochondrial Control Region. Journal of Molecular Evolution, 2000, 50, 224-231.	1.8	13
42	Comparison of Ribosomal ITS Regions AmongAndroctonusspp. Scorpions (Scorpionida: Buthidae) from Tunisia. Journal of Medical Entomology, 2000, 37, 787-790.	1.8	25
43	Is chromosomal speciation occurring in house mice in Tunisia?. Biological Journal of the Linnean Society, 1999, 68, 387-399.	1.6	24
44	Identification of evolutionary significant units in the Spanish wild goat, Capra pyrenaica (Mammalia,) Tj ETQq0 C	0 r <u>g</u> BT /0	verlock 10 Tf
45	Is chromosomal speciation occurring in house mice in Tunisia?. Biological Journal of the Linnean Society, 1999, 68, 387-399.	1.6	4
46	Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism. Heredity, 1998, 80, 70-77.	2.6	27
47	Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity, 1998, 80, 742-752.	2.6	229
48	Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism. Heredity, 1998, 80, 70-77.	2.6	3
49	Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity, 1998, 80, 742-752.	2.6	11
50	Partitioning of Genetic Diversity in the House Mouse. , 1998, , 431-434.		0
51	L'évaluation génétique de la biodiversité. Biofutur, 1997, 1997, 29-33.	0.0	0
52	Molecular technologies for biodiversity evaluation: Opportunities and challenges. Nature Biotechnology, 1997, 15, 625-628.	17.5	147
53	New assays for Y Chromosome and p53 pseudogene clines among East Holstein house mice. Mammalian Genome, 1997, 8, 279-281.	2.2	24
54	Social structure of the mound-building mouse Mus spicilegus revealed by genetic analysis with microsatellites. Molecular Ecology, 1997, 6, 1009-1017.	3.9	64

#	Article	IF	CITATIONS
55	Discordant Phylogeographic Patterns Between the <i>Y</i> Chromosome and Mitochondrial DNA in the House Mouse: Selection on the <i>Y</i> Chromosome?. Genetics, 1997, 146, 1019-1034.	2.9	91
56	Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bulletin of Entomological Research, 1996, 86, 407-417.	1.0	116
57	Genomic incompatibilities in the hybrid zone between house mice in Denmark: evidence from steep and non-coincident chromosomal clines for Robertsonian fusions. Genetical Research, 1996, 67, 123-134.	0.9	36
58	Mitochondrial COI sequences in mites: evidence for variations in base composition. Insect Molecular Biology, 1996, 5, 281-285.	2.0	29
59	Origin and radiation of the house mouse: mitochondrial DNA phylogeny. Journal of Evolutionary Biology, 1996, 9, 391-415.	1.7	169
60	Origin and radiation of the house mouse: clues from nuclear genes. Journal of Evolutionary Biology, 1996, 9, 519-539.	1.7	119
61	Evolutionary correlation between control region sequence and restriction polymorphisms in the mitochondrial genome of a large Senegalese Mandenka sample Molecular Biology and Evolution, 1995, 12, 334-45.	8.9	116
62	Population subdivision and gene flow in Danish house mice. Molecular Ecology, 1995, 4, 311-320.	3.9	79
63	Evolution of the Y-Chromosome in the Wild Mouse. , 1994, , 41-55.		O
64	The House Mouse as a Ring Species?., 1994,, 13-23.		13
65	Speciation and paraphyly in western mediterranean hares (Lepus castroviejoi, L. europaeus, L.) Tj ETQq1 1 0.7843 423-436.	14 rgBT /C 1.7	
66	Counterselection on sex chromosomes in the Mus musculus European hybrid zone. Journal of Evolutionary Biology, 1993, 6, 529-546.	1.7	153
67	Sequence analysis of a deleted mitochondrial DNA molecule in heteroplasmic mice. Mammalian Genome, 1993, 4, 680-683.	2.2	4
68	The Evolution of House Mice. Annual Review of Ecology, Evolution, and Systematics, 1993, 24, 119-152.	6.7	423
69	The musculus-type Y Chromosome of the laboratory mouse is of Asian origin. Mammalian Genome, 1992, 3, 84-91.	2.2	64
70	Wormy mice in a hybrid zone: A genetic control of susceptibility to parasite infection. Journal of Evolutionary Biology, 1991, 4, 679-687.	1.7	92
71	Polymorphism of mitochondrial genes in populations of Leporinus friderici (Bloch, 1794): intraspecific structure and zoogeography of the Neotropical fish. Genetica, 1991, 84, 137-142.	1.1	20
72	Molecular phylogenies in the genus Mus: Comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. Biological Journal of the Linnean Society, 1990, 41, 83-103.	1.6	164

#	Article	IF	CITATIONS
73	Variations of a Y chromosome repeated sequence across subspecies of Mus musculus. Heredity, 1989, 63, 289-297.	2.6	27
74	Genetical variation and polyphyletic origin in Japanese Mus musculus. Heredity, 1989, 63, 299-308.	2.6	51
75	Haplotypes that are mosaic for wild-type and t complex-specific alleles in wild mice Genetics, 1989, 123, 405-415.	2.9	22
76	Analyse génétique de la zone d'hybridation entre les deux sous-espèces de souris Mus musculus domesticus et Mus musculus musculus en Bulgarie. Genome, 1988, 30, 427-437.	2.0	66
77	A steep cline for mitochondrial DNA in Danish mice. Genetical Research, 1988, 52, 185-193.	0.9	76
78	Phylogenetic distribution in the genus Mus of t-complex-specific DNA and protein markers: inferences on the origin of t-haplotypes Molecular Biology and Evolution, 1988, 5, 120-33.	8.9	33
79	Heteroplasmy in mice with deletion of a large coding region of mitochondrial DNA Molecular Biology and Evolution, 1987, 4, 46-55.	8.9	69
80	Absence of <i>Y</i> -chromosome introgression across the hybrid zone between <i>Mus musculus domesticus</i> and <i>Mus musculus musculus</i> . Genetical Research, 1986, 48, 191-197.	0.9	125
81	Génétique et évolution du génome mitochondrial des Métazoaires. Genetique, Selection, Evolution, 1986, 18, 73-98.	0.0	0
82	Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature, 1985, 315, 70-72.	27.8	242