

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6536387/publications.pdf Version: 2024-02-01

M-HIO

#	Article	IF	CITATIONS
1	Emerging trends in global freshwater availability. Nature, 2018, 557, 651-659.	27.8	1,087
2	Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophysical Research Letters, 2011, 38, .	4.0	703
3	Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigrisâ€Euphratesâ€Western Iran region. Water Resources Research, 2013, 49, 904-914.	4.2	601
4	Quantifying renewable groundwater stress with <scp>GRACE</scp> . Water Resources Research, 2015, 51, 5217-5238.	4.2	588
5	A decade of sea level rise slowed by climate-driven hydrology. Science, 2016, 351, 699-703.	12.6	219
6	Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle. Geophysical Research Letters, 2013, 40, 301-306.	4.0	202
7	Uncertainty in global groundwater storage estimates in a <scp>T</scp> otal <scp>G</scp> roundwater <scp>S</scp> tress framework. Water Resources Research, 2015, 51, 5198-5216.	4.2	180
8	Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 2019, 572, 230-234.	27.8	168
9	Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 2020, 11, 3710.	12.8	151
10	Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resources Research, 2010, 46, .	4.2	124
11	Fate of water pumped from underground and contributions to sea-level rise. Nature Climate Change, 2016, 6, 777-780.	18.8	103
12	Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites. Geophysical Research Letters, 2019, 46, 5254-5264.	4.0	84
13	Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophysical Research Letters, 2013, 40, 4680-4684.	4.0	61
14	Recent Changes in Land Water Storage and its Contribution to Sea Level Variations. Surveys in Geophysics, 2017, 38, 131-152.	4.6	59
15	Effect of water table dynamics on land surface hydrologic memory. Journal of Geophysical Research, 2010, 115, .	3.3	56
16	Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 2020, 17, 5615-5638.	3.3	55
17	An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. Journal of Advances in Modeling Earth Systems, 2015, 7, 1810-1827.	3.8	54
18	Constraining water table depth simulations in a land surface model using estimated baseflow. Advances in Water Resources, 2008, 31, 1552-1564.	3.8	40

M-H Lo

#	Article	IF	CITATIONS
19	Assessing surface water consumption using remotelyâ€sensed groundwater, evapotranspiration, and precipitation. Geophysical Research Letters, 2012, 39, .	4.0	38
20	GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	3.6	38
21	Remote detection of water management impacts on evapotranspiration in the Colorado River Basin. Geophysical Research Letters, 2016, 43, 5089-5097.	4.0	37
22	Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models. Geoscientific Model Development, 2015, 8, 3021-3031.	3.6	32
23	Relation between precipitation location and antecedent/subsequent soil moisture spatial patterns. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6319-6328.	3.3	32
24	Irrigation-Induced Land–Atmosphere Feedbacks and Their Impacts on Indian Summer Monsoon. Journal of Climate, 2018, 31, 8785-8801.	3.2	31
25	Increases in the annual range of soil water storage at northern middle and high latitudes under global warming. Geophysical Research Letters, 2015, 42, 3903-3910.	4.0	30
26	Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. Journal of Geophysical Research, 2011, 116, .	3.3	29
27	Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophysical Research Letters, 2015, 42, 8605-8614.	4.0	29
28	Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nature Communications, 2020, 11, 4390.	12.8	29
29	The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños?. Environmental Research Letters, 2016, 11, 104003.	5.2	26
30	Thermodynamic and Dynamic Responses to Deforestation in the Maritime Continent: A Modeling Study. Journal of Climate, 2019, 32, 3505-3527.	3.2	25
31	The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: A framework for improving the GCM representation of landâ€atmosphere interactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3714-3727.	3.3	24
32	Asymmetric Responses of Tropical Precipitation during ENSO. Journal of Climate, 2007, 20, 3411-3433.	3.2	21
33	Asymmetric responses of land hydroclimatology to two types of El Niño in the Mississippi River Basin. Geophysical Research Letters, 2014, 41, 582-588.	4.0	21
34	Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model. Climate Dynamics, 2018, 50, 3505-3522.	3.8	17
35	Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater. Environmental Research Letters, 2018, 13, 054002.	5.2	17
36	The changing influence of El Niño on the Great Plains lowâ€level jet. Atmospheric Science Letters, 2015, 16, 512-517.	1.9	16

M-H Lo

#	Article	IF	CITATIONS
37	Terrestrial water flux responses to global warming in tropical rainforest areas. Earth's Future, 2016, 4, 210-224.	6.3	14
38	Separating decadal global water cycle variability from sea level rise. Scientific Reports, 2017, 7, 995.	3.3	14
39	The influence of groundwater representation on hydrological simulation and its assessment using satelliteâ€based water storage variation. Hydrological Processes, 2019, 33, 1218-1230.	2.6	14
40	The increased frequency of combined El Niño and positive IOD events since 1965s and its impacts on maritime continent hydroclimates. Scientific Reports, 2022, 12, 7532.	3.3	13
41	Mapping the locations of asymmetric and symmetric discharge responses in global rivers to the two types of El Niñ0. Environmental Research Letters, 2016, 11, 044012.	5.2	12
42	Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin. Climate Dynamics, 2016, 46, 1001-1013.	3.8	12
43	Central Taiwan's hydroclimate in response to land use/cover change. Environmental Research Letters, 2020, 15, 034015.	5.2	12
44	The Seasonality of Global Land and Ocean Mass and the Changing Water Cycle. Geophysical Research Letters, 2021, 48, e2020GL091248.	4.0	11
45	The response of coastal stratocumulus clouds to agricultural irrigation in California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6044-6051.	3.3	10
46	The mechanisms behind changes in the seasonality of global precipitation found in reanalysis products and CMIP5 simulations. Climate Dynamics, 2019, 53, 4173-4187.	3.8	10
47	The GLACE-Hydrology Experiment: Effects of Land–Atmosphere Coupling on Soil Moisture Variability and Predictability. Journal of Climate, 2020, 33, 6511-6529.	3.2	9
48	Post-Monsoon Season Precipitation Reduction over South Asia: Impacts of Anthropogenic Aerosols and Irrigation. Atmosphere, 2018, 9, 311.	2.3	8
49	Temporal Changes in Land Surface Coupling Strength: An Example in a Semi-Arid Region of Australia. Journal of Climate, 2021, 34, 1503-1513.	3.2	8
50	Terrestrial Water Storage Anomalies Emphasize Interannual Variations in Global Mean Sea Level During 1997–1998 and 2015–2016 El Niño Events. Geophysical Research Letters, 2021, 48, e2021GL09410	o4:0	8
51	The annual cycle of terrestrial water storage anomalies in CMIP6 models evaluated against GRACE data. Journal of Climate, 2021, , 1-40.	3.2	7
52	Reply to comment by Sahoo et al. on "Quantifying renewable groundwater stress with GRACE― Water Resources Research, 2016, 52, 4188-4192.	4.2	6
53	Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia. Environmental Research Letters, 2021, 16, 064049.	5.2	6
54	The role of El Niño in modulating the effects of deforestation in the Maritime Continent. Environmental Research Letters, 2021, 16, 054056.	5.2	5

M-H Lo

#	Article	IF	CITATIONS
55	Discontinuity of Diurnal Temperature Range Along Elevated Regions. Geophysical Research Letters, 2022, 49, .	4.0	4
56	Early Peak of Latent Heat Fluxes Regulates Diurnal Temperature Range in Montane Cloud Forests. Journal of Hydrometeorology, 2021, , .	1.9	3
57	Regional disparities in the exposure to heat-related mortality risk under 1.5 ŰC and 2 ŰC global warming. Environmental Research Letters, 2022, 17, 054009.	5.2	3
58	Assessment of spatiotemporal dynamics of diurnal fog occurrence in subtropical montane cloud forests. Agricultural and Forest Meteorology, 2022, 317, 108899.	4.8	3
59	Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (<scp>YESR2020</scp>). Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1663-1682.	2.7	3
60	Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble community atmospheric model hindcasts. Climate Dynamics, 2016, 47, 2747-2764.	3.8	2
61	Integrated multi-parameter approach for delineating groundwater potential zones in a crystalline aquifer of southern India. Arabian Journal of Geosciences, 2017, 10, 1.	1.3	2
62	Evaluation of Groundwater Simulations in Benin from the ALMIP2 Project. Journal of Hydrometeorology, 2019, 20, 339-354.	1.9	2
63	Using MODIS/Terra and Landsat imageries to improve surface water quantification in Sylhet, Bangladesh. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30, 111-126.	0.6	2
64	Assessing the radiative impacts of precipitating clouds on winter surface air temperatures and land surface properties in general circulation models using observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,536.	3.3	1
65	Interdecadal variability of South–Southeast Asian rainfall and crossâ€equatorial flows during April–May. International Journal of Climatology, 2021, 41, 1066-1079.	3.5	1
66	GRACE Satellites Enable Long-Lead Forecasts of Mountain Contributions to Streamflow in the Low-Flow Season. Remote Sensing, 2021, 13, 1993.	4.0	1