
Gayle M Volk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6536299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology, 2006, 52, 48-61.	0.7	130
2	Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genetics and Genomes, 2009, 5, 339-347.	1.6	117
3	Sustaining the Future of Plant Breeding: The Critical Role of the USDAâ€ARS National Plant Germplasm System. Crop Science, 2018, 58, 451-468.	1.8	91
4	Genetic diversity in <i>Malus</i> × <i>domestica</i> (Rosaceae) through time in response to domestication. American Journal of Botany, 2014, 101, 1770-1779.	1.7	87
5	Ex Situ Conservation of Vegetatively Propagated Species: Development of a Seed-based Core Collection for Malus sieversii. Journal of the American Society for Horticultural Science, 2005, 130, 203-210.	1.0	79
6	Genetic Diversity among U.S. Garlic Clones as Detected Using AFLP Methods. Journal of the American Society for Horticultural Science, 2004, 129, 559-569.	1.0	76
7	Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances, 2014, 32, 583-595.	11.7	75
8	The vulnerability of US apple (Malus) genetic resources. Genetic Resources and Crop Evolution, 2015, 62, 765-794.	1.6	74
9	Cryobiotechnology of apple (Malus spp.): development, progress and future prospects. Plant Cell Reports, 2018, 37, 689-709.	5.6	69
10	Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L. and Cucurbita pepo L Planta, 1996, 199, 425.	3.2	64
11	Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell, Tissue and Organ Culture, 2021, 144, 7-20.	2.3	62
12	Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology, 2006, 52, 305-308.	0.7	55
13	Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell, Tissue and Organ Culture, 2021, 144, 21-34.	2.3	52
14	Diversity of Wild Pyrus communis Based on Microsatellite Analyses. Journal of the American Society for Horticultural Science, 2006, 131, 408-417.	1.0	48
15	Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. Journal of Biotechnology, 2015, 214, 182-191.	3.8	42
16	Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Mentha × piperita. Protoplasma, 2007, 231, 215-226.	2.1	40
17	Phenotypic Characteristics of Ten Garlic Cultivars Grown at Different North American Locations. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1238-1247.	1.0	40
18	Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta, 2006, 224, 1415-1426.	3.2	38

#	Article	IF	CITATIONS
19	Combining Thermotherapy with Cryotherapy for Efficient Eradication of <i>Apple stem grooving virus</i> from Infected In-vitro-cultured Apple Shoots. Plant Disease, 2018, 102, 1574-1580.	1.4	38
20	Application of Functional Genomics and Proteomics to Plant Cryopreservation. Current Genomics, 2010, 11, 24-29.	1.6	36
21	Chloroplast heterogeneity and historical admixture within the genus <i>Malus</i> . American Journal of Botany, 2015, 102, 1198-1208.	1.7	36
22	Genetic Diversity and Disease Resistance of Wild Malus orientalis from Turkey and Southern Russia. Journal of the American Society for Horticultural Science, 2008, 133, 383-389.	1.0	35
23	Identification of "Duplicate―Accessions within the USDA-ARS National Plant Germplasm System Malus Collection. Journal of the American Society for Horticultural Science, 2012, 137, 333-342.	1.0	35
24	Selection of Stratified Core Sets Representing Wild Apple (Malus sieversii). Journal of the American Society for Horticultural Science, 2009, 134, 228-235.	1.0	34
25	An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification. Acta Physiologiae Plantarum, 2014, 36, 1683-1692.	2.1	33
26	Identification of interspecific hybrids among domesticated apple and its wild relatives. Tree Genetics and Genomes, 2012, 8, 1223-1235.	1.6	32
27	Calcium Channels are Involved in Calcium Oxalate Crystal Formation in Specialized Cells of Pistia stratiotes L. Annals of Botany, 2004, 93, 741-753.	2.9	31
28	Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources. Tree Genetics and Genomes, 2015, 11, 1.	1.6	30
29	Galactinol Synthase Gene Expression in Melon. Journal of the American Society for Horticultural Science, 2003, 128, 8-15.	1.0	30
30	Modeling Demographics and Genetic Diversity in Ex Situ Collections during Seed Storage and Regeneration. Crop Science, 2010, 50, 2440-2447.	1.8	28
31	Cryopreservation of 12 Vitis Species Using Apical Shoot Tips Derived from Plants Grown In Vitro. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 976-981.	1.0	27
32	Citrus cryopreservation: viability of diverse taxa and histological observations. Plant Cell, Tissue and Organ Culture, 2017, 128, 327-334.	2.3	26
33	Shoot tip cryotherapy for efficient eradication of grapevine leafrollâ€associated virusâ€3 from diseased grapevine in vitro plants. Annals of Applied Biology, 2018, 173, 261-270.	2.5	26
34	Eradication of latent viruses from apple cultivar â€~Monalisa' shoot tips using droplet-vitrification cryotherapy. Scientia Horticulturae, 2019, 250, 12-18.	3.6	26
35	Capturing the Diversity of Wild Malus orientalis from Georgia, Armenia, Russia, and Turkey. Journal of the American Society for Horticultural Science, 2009, 134, 453-459.	1.0	26
36	Droplet-vitrification cryopreservation of in vitro-grown shoot tips of grapevine (Vitis spp.). In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 590-599.	2.1	25

#	Article	IF	CITATIONS
37	Probabilistic Models for Collecting Genetic Diversity: Comparisons, Caveats, and Limitations. Crop Science, 2007, 47, 861-866.	1.8	24
38	Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses from â€~Marubakaido' apple rootstock. Journal of Biotechnology, 2018, 269, 1-7.	3.8	24
39	Availability of Genotypic Data for USDA-ARS National Plant Germplasm System Accessions Using the Genetic Resources Information Network (GRIN) Database. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1365-1366.	1.0	24
40	Genebanks in the post-genomic age: Emerging roles and anticipated uses. Biodiversity, 2008, 9, 68-71.	1.1	22
41	Development, progress and future prospects in cryobiotechnology of Lilium spp Plant Methods, 2019, 15, 125.	4.3	22
42	Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Genetic Resources and Crop Evolution, 2017, 64, 1613-1622.	1.6	21
43	Diversity Captured in the USDA-ARS National Plant Germplasm System Apple Core Collection. Journal of the American Society for Horticultural Science, 2013, 138, 375-381.	1.0	21
44	Identification of Historic Apple Trees in the Southwestern United States and Implications for Conservation. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 589-594.	1.0	19
45	Grapevine Shoot Tip Cryopreservation and Cryotherapy: Secure Storage of Disease-Free Plants. Plants, 2021, 10, 2190.	3.5	18
46	Cryobiotechnology: A Double-Edged Sword for Obligate Plant Pathogens. Plant Disease, 2019, 103, 1058-1067.	1.4	17
47	Malus sieversii: A Diverse Central Asian Apple Species in the USDA-ARS National Plant Germplasm System. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1440-1444.	1.0	17
48	Historic American Apple Cultivars: Identification and Availability. Journal of the American Society for Horticultural Science, 2016, 141, 292-301.	1.0	17
49	Cryopreservation of citrus shoot tips using micrografting for recovery. Cryo-Letters, 2012, 33, 418-26.	0.3	17
50	Low-temperature Storage of Garlic for Spring Planting. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 571-573.	1.0	16
51	Integrating Genomic and Phenomic Approaches to Support Plant Genetic Resources Conservation and Use. Plants, 2021, 10, 2260.	3.5	15
52	Considerations for large-scale implementation of dormant budwood cryopreservation. Plant Cell, Tissue and Organ Culture, 2021, 144, 35-48.	2.3	14
53	Genetic Variation and Distribution of Pacific Crabapple. Journal of the American Society for Horticultural Science, 2012, 137, 325-332.	1.0	14
54	Cryopreservation of garlic (allium sativum L.) using plant vitrification solution 2. Cryo-Letters, 2004, 25, 219-26.	0.3	14

#	Article	IF	CITATIONS
55	Implementation of garlic cryopreservation techniques in the national plant germplasm system. Cryo-Letters, 2006, 27, 99-106.	0.3	14
56	Cryopreservation of Jerusalem artichoke cultivars using an improved droplet-vitrification method. Plant Cell, Tissue and Organ Culture, 2017, 128, 577-587.	2.3	13
57	Genetic relationships between wild progenitor pear (Pyrus L.) species and local cultivars native to Georgia, South Caucasus. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 504-512.	1.2	12
58	Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips. Plant Cell Reports, 2017, 36, 459-470.	5.6	12
59	Thermotherapy Followed by Shoot Tip Cryotherapy Eradicates Latent Viruses and Apple Hammerhead Viroid from In Vitro Apple Rootstocks. Plants, 2022, 11, 582.	3.5	12
60	Shoot tip cryotherapy for plant pathogen eradication. Plant Pathology, 2022, 71, 1241-1254.	2.4	12
61	Identification of unknown apple (Malus × domestica) cultivars demonstrates the impact of local breeding program on cultivar diversity. Genetic Resources and Crop Evolution, 2018, 65, 1317-1327.	1.6	11
62	Optimization of in vitro germination and cryopreservation conditions for preserving date palm pollen in the USDA National Plant Germplasm System. Plant Cell, Tissue and Organ Culture, 2021, 144, 223-232.	2.3	11
63	Novel Diversity Identified in a Wild Apple Population from the Kyrgyz Republic. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 516-518.	1.0	11
64	Citrus genebank collections: international collaboration opportunities between the US and Russia. Genetic Resources and Crop Evolution, 2018, 65, 433-447.	1.6	10
65	Cryoprotectants and components induce plasmolytic responses in sweet potato (Ipomoea batatas (L.)) Tj ETQq1	1 0.78431 2.1	.4 ₉ rgBT /Ov
66	Localization of a calcium channel-like protein in the sieve element plasma membrane. Functional Plant Biology, 2000, 27, 779.	2.1	9
67	Seeds capture the diversity of genetic resource collections of Malus sieversii maintained in an orchard. Genetic Resources and Crop Evolution, 2017, 64, 1513-1528.	1.6	8
68	Variation in Low-temperature Exotherms of Pecan Cultivar Dormant Twigs. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 317-321.	1.0	8
69	CRYOPRESERVATION OF CITRUS FOR LONG-TERM CONSERVATION. Acta Horticulturae, 2015, , 187-191.	0.2	7
70	Temperate Tree Fruits of North America: Malus Mill., Prunus L., Diospyros L., and Asimina Adans. , 2019, , 353-386.		7
71	Identification of Historic Homestead and Orchard Apple Cultivars in Wyoming. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 8-16.	1.0	7
72	ldentification of a highly successful cryopreservation method (droplet-vitrification) for petunia. In Vitro Cellular and Developmental Biology - Plant, 2015, 51, 445-451.	2.1	6

#	Article	IF	CITATIONS
73	Virus infection reduces shoot proliferation of in vitro stock cultures and ability of cryopreserved shoot tips to regenerate into normal shoots in â€~Gala' apple (Malus × domestica). Cryobiology, 2018, 84, 52-58.	0.7	6
74	Standardized Plant Disease Evaluations Will Enhance Resistance Gene Discovery. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1317-1320.	1.0	6
75	Cryopreservation of Arabidopsis thaliana shoot tips. Cryo-Letters, 2006, 27, 353-60.	0.3	6
76	Genebank Conservation of Germplasm Collected from Wild Species. , 2018, , 245-280.		5
77	Genetic Diversity and Domestication History in Pyrus. Compendium of Plant Genomes, 2019, , 51-62.	0.5	5
78	Training in Plant Genetic Resources Management: A Way Forward. Crop Science, 2019, 59, 853-857.	1.8	5
79	Survey Identifies Essential Plant Genetic Resources Training Program Components. Crop Science, 2019, 59, 2308-2316.	1.8	5
80	Integration of Georeferencing, Habitat, Sampling, and Genetic Data for Documentation of Wild Plant Genetic Resources. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1446-1449.	1.0	5
81	The ASHS Outstanding Fruit Cultivar Award: A 25-year Retrospective. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 4-12.	1.0	5
82	Photoperiod Shift Effects on Yield Characteristics of Rice. Crop Science, 1995, 35, 1631-1635.	1.8	4
83	Chloroplast sequence data differentiate Maleae, and specifically Pyrus, species in the USDA-ARS National Plant Germplasm System. Genetic Resources and Crop Evolution, 2019, 66, 5-15.	1.6	4
84	Non-Uniform Distribution of Cryoprotecting Agents in Rice Culture Cells Measured by CARS Microscopy. Plants, 2021, 10, 589.	3.5	4
85	Horticultural Value of Wild Genetic Resources—Introduction to the Workshop. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1436-1437.	1.0	4
86	Genetic fingerprinting identifies apple (Malus domestica Borkh.) fruit cultivars in historic orchards on public lands. Genetic Resources and Crop Evolution, 2021, 68, 3133-3144.	1.6	3
87	Advantages for the Use of Standardized Phenotyping in Databases. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1310-1313.	1.0	3
88	Hydration of Cuphea seeds containing crystallised triacylglycerols. Functional Plant Biology, 2007, 34, 360.	2.1	2
89	Genetic data inform Yosemite National Park's apple orchard management guidelines. Plants People Planet, 2021, 3, 142-154.	3.3	2
90	Cryopreservation of Grapevine Shoot Tips from In Vitro Plants Using Droplet Vitrification and V		2

Cryo-plate Techniques. , 2019, , 469-482.

#	Article	IF	CITATIONS
91	Cryopreservation of Populus trichocarpa and Salix dormant buds with recovery by grafting or direct rooting. Cryo-Letters, 2014, 35, 507-15.	0.3	2
92	Micrografting: An Old Dog Plays New Tricks in Obligate Plant Pathogens. Plant Disease, 2022, 106, 2545-2557.	1.4	2
93	Standardized Phenotyping: Advantages to Horticulture—Introduction to the Workshop. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1306.	1.0	1
94	Apple Genetic Resources: Diversity and Conservation. Compendium of Plant Genomes, 2021, , 33-45.	0.5	0
95	(19) Cryopreservation of Arabidopsisthaliana Shoot Tips. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1067E-1067.	1.0	0
96	(274) Genetic Diversity of Wild Pyrus communis L Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1035D-1036.	1.0	0
97	EVALUATION OF STRAWBERRY (FRAGARIA SP.) SEEDLINGS FOR DROUGHT AND SALT TOLERANCE BY IN VITRO INDUCED STRESSES Hortscience: A Publication of the American Society for Hortcultural Science, 1990, 25, 1113f-1113.	1.0	0
98	Localization and Visualization of Dimethyl Sulfoxide In Mentha X Piperita Shoot Tips. Cryobiology, 2021, 103, 170.	0.7	0