Jiunn-Wei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6535327/publications.pdf

Version: 2024-02-01

81900 118850 4,365 114 39 62 citations g-index h-index papers 116 116 116 1780 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Nucleon-nucleon effective field theory without pions. Nuclear Physics A, 1999, 653, 386-412.	1.5	254
2	Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation. Physical Review Letters, 2013, 110, 262301.	7.8	229
3	Parton distributions and lattice QCD calculations: A community white paper. Progress in Particle and Nuclear Physics, 2018, 100, 107-160.	14.4	186
4	Nucleon helicity and transversity parton distributions from lattice QCD. Nuclear Physics B, 2016, 911, 246-273.	2.5	164
5	Flavor structure of the nucleon sea from lattice QCD. Physical Review D, 2015, 91, .	4.7	146
6	Neutrino-deuteron scattering in effective field theory at next-to-next-to-leading order. Physical Review C, 2001, 63, .	2.9	113
7	Pion distribution amplitude from lattice QCD. Physical Review D, 2017, 95, .	4.7	111
8	Parton distribution function with nonperturbative renormalization from lattice QCD. Physical Review D, 2018, 97, .	4.7	97
9	Improved quasi parton distribution through Wilson line renormalization. Nuclear Physics B, 2017, 915, 1-9.	2.5	87
10	npâ†'dγfor big-bang nucleosynthesis. Physical Review C, 1999, 60, .	2.9	86
11	First direct lattice-QCD calculation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>x</mml:mi></mml:math> -dependence of the pion parton distribution function. Physical Review D, 2019, 100, .	4.7	86
12	Towards a holographic model of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>D</mml:mi></mml:math> -wave superconductors. Physical Review D, 2010, 81, .	4.7	74
13	Baryons in partially quenched chiral perturbation theory. Physical Review D, 2002, 65, .	4.7	73
14	Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass. Physical Review Letters, 2018, 121, 242003.	7.8	73
15	Is the Sullivan process compatible with QCD chiral dynamics?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 523, 107-110.	4.1	71
16	Shear viscosity to entropy density ratio of QCD below the deconfinement temperature. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 647, 371-375.	4.1	71
17	QCD viscosity to entropy density ratio in the hadronic phase. Physical Review D, 2007, 76, .	4.7	70
18	Twisted valence quarks and hadron interactions on the lattice. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 616, 208-214.	4.1	68

#	Article	IF	Citations
19	Elastic and inelastic neutrino–deuteron scattering in effective field theory. Nuclear Physics A, 2000, 675, 575-600.	1.5	64
20	Lattice Theory for Low Energy Fermions at Nonzero Chemical Potential. Physical Review Letters, 2004, 92, 257002.	7.8	62
21	Leading Chiral Contributions to the Spin Structure of the Proton. Physical Review Letters, 2002, 88, 052003.	7.8	61
22	Proton–proton fusion in effective field theory to fifth order. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 520, 87-91.	4.1	60
23	Kaon distribution amplitude from lattice QCD and the flavor SU(3) symmetry. Nuclear Physics B, 2019, 939, 429-446.	2.5	56
24	Constraints on millicharged neutrinos via analysis of data from atomic ionizations with germanium detectors at sub-keV sensitivities. Physical Review D, 2014, 90, .	4.7	55
25	Isoscalar M1 and E2 amplitudes in np→dγ. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 464, 1-11.	4.1	54
26	Improved parton distribution functions at the physical pion mass. Physical Review D, 2018, 98, .	4.7	54
27	Pion generalized parton distribution from lattice QCD. Nuclear Physics B, 2020, 952, 114940.	2.5	53
28	Two meson systems with Ginsparg-Wilson valence quarks. Physical Review D, 2007, 75, .	4.7	52
29	Kinetic equations for massive Dirac fermions in electromagnetic field with non-Abelian Berry phase. Physical Review D, $2014, 89, .$	4.7	50
30	Unpolarized isovector quark distribution function from lattice QCD: A systematic analysis of renormalization and matching. Physical Review D, 2020, 101 , .	4.7	50
31	The polarizability of the deuteron. Nuclear Physics A, 1998, 644, 221-234.	1.5	48
32	Constructing Parton Convolution in Effective Field Theory. Physical Review Letters, 2001, 87, 152002.	7.8	48
33	Low-energy electronic recoil in xenon detectors by solar neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 656-661.	4.1	45
34	Valence-quark distribution of the kaon and pion from lattice QCD. Physical Review D, 2021, 103, .	4.7	45
35	Ginsparg-Wilson pions scattering in a sea of staggered quarks. Physical Review D, 2006, 73, .	4.7	44
36	Bulk viscosity of a gas of massless pions. Physical Review C, 2009, 79, .	2.9	44

#	Article	IF	CITATIONS
37	Parton distribution functions from reduced loffe-time distributions. Physical Review D, 2018, 97, .	4.7	42
38	î ³ -deuteron Compton scattering in effective field theory. Nuclear Physics A, 1998, 644, 245-259.	1.5	41
39	Universality of mixed action extrapolation formulae. Journal of High Energy Physics, 2009, 2009, 090-090.	4.7	41
40	Inequalities for Light Nuclei in the Wigner Symmetry Limit. Physical Review Letters, 2004, 93, 242302.	7.8	39
41	Leading chiral corrections to the nucleon generalized parton distributions. Physical Review D, 2006, 74, .	4.7	38
42	Atomic ionization of germanium by neutrinos from an ab initio approach. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 731, 159-162.	4.1	38
43	Constraints on two-body axial currents from reactor antineutrino–deuteron breakup reactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 549, 26-31.	4.1	36
44	Phase transitions and perfectness of fluids in weakly coupled real scalar field theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 670, 18-21.	4.1	36
45	Pion and kaon distribution amplitudes in the continuum limit. Physical Review D, 2020, 102, .	4.7	35
46	Shear viscosity of a gluon plasma in perturbative QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 685, 277-282.	4.1	34
47	Constraining neutrino electromagnetic properties by germanium detectors. Physical Review D, 2015, 91,	4.7	32
48	Robust characteristics of non-Gaussian fluctuations from the NJL model. Physical Review D, 2016, 93, .	4.7	31
49	Constraining the leading weak axial two-body current by recent solar neutrino flux data. Physical Review C, 2003, 67, .	2.9	30
50	Model-Independent Results for SU(3) Violation in Light-Cone Distribution Functions. Physical Review Letters, 2004, 92, 202001.	7.8	30
51	Short-Range Correlations and the EMC Effect in Effective Field Theory. Physical Review Letters, 2017, 119, 262502.	7.8	30
52	Symmetry properties of nonlocal quark bilinear operators on a Lattice (LP ³) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 ₉ 142 Td ((
53	Model-independent determination of the Migdal effect via photoabsorption. Physical Review D, 2020, 102 , .	4.7	29
54	BEC-BCS crossover in theϵexpansion. Physical Review A, 2007, 75, .	2.5	28

#	Article	IF	Citations
55	Near threshold proton–proton fusion in effective field theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 720, 385-388.	4.1	27
56	Nonlinear chiral transport phenomena. Physical Review D, 2016, 93, .	4.7	27
57	Mixed action effective field theory: An addendum. Physical Review D, 2009, 79, .	4.7	26
58	<pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>U</mml:mi><mml:mi mathvariant="normal">A</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo) (st<="" 0="" 10="" 50="" 612="" etqq0="" overlock="" pre="" rgbt="" td="" tf="" tj=""></mml:mo)></pre>	retchy="fa	$alse^{24})$
59	Physical Review D, 2009, 80, . Universality of the EMC effect. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 625, 165-170.	4.1	22
60	A holographic model for hall viscosity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 713, 47-52.	4.1	22
61	Imaginary Polarization as a Way to Surmount the Sign Problem in <i>AbÂlnitio</i> Calculations of Spin-Imbalanced Fermi Gases. Physical Review Letters, 2013, 110, 130404.	7.8	22
62	Fixing two-nucleon weak-axial couplingL1,Afromνâ^'dcapture. Physical Review C, 2005, 72, .	2.9	21
63	Baryon susceptibilities, non-Gaussian moments, and the QCD critical point. Physical Review D, 2015, 92,	4.7	21
64	Large-Nc quark distributions in the delta and chiral logarithms in quark distributions of the nucleon. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 523, 73-78.	4.1	20
65	How perfect can a gluon plasma be in perturbative QCD?. Physical Review D, 2011, 83, .	4.7	20
66	Measuring theP-Odd Pion-Nucleon CouplinghπNN(1)inπ+-Photoproton Production near Threshold. Physical Review Letters, 2001, 86, 4239-4242.	7.8	18
67	Matrix elements of twist-2 operators in quenched chiral perturbation theory. Nuclear Physics A, 2002, 707, 452-468.	1.5	18
68	Parity-violating pion–nucleon coupling hπNN(1) from π+-electroproton production near the threshold. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 501, 209-215.	4.1	17
69	Peak-dip-hump lineshape from holographic superconductivity. Physical Review D, 2010, 82, .	4.7	17
70	Novel parity violating transport coefficients in $2+1$ dimensions from holography. Journal of High Energy Physics, 2012, 2012, 1.	4.7	17
71	Electronic and nuclear contributions in sub-GeV dark matter scattering: A case study with hydrogen. Physical Review D, 2015, 92, .	4.7	17
72	Discovery potential of multiton xenon detectors in neutrino electromagnetic properties. Physical Review D, 2019, 100, .	4.7	17

#	Article	IF	Citations
73	Hadronic and electromagnetic interactions of quarkonia. Physical Review D, 1998, 57, 2837-2846.	4.7	16
74	Chiral extrapolation of strange matrix elements in the nucleon. Physical Review D, 2002, 66, .	4.7	16
75	d + id holographic superconductors. Journal of High Energy Physics, 2011, 2011, 1.	4.7	16
76	Quark-mass dependence of two-nucleon observables. Physical Review C, 2012, 86, .	2.9	16
77	Shear and bulk viscosities of a gluon plasma in perturbative QCD: Comparison of different treatments for the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>g</mml:mi>ggc/mml:mi>c/mml:</mml:mrow></mml:math>	2.9 minl:mi><	mml:mi>g<
78	Model-independent results for $SU(3)$ violation in twist-3 light-cone distribution functions. Physical Review D, 2006, 73, .	4.7	14
79	Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations. Journal of Physics G: Nuclear and Particle Physics, 2014, 41, 055110.	3.6	14
80	Generalized parton distributions of the pion in partially-quenched chiral perturbation theory. Physical Review D, 2007, 75, .	4.7	13
81	lonization of hydrogen by neutrino magnetic moment, relativistic muon, and WIMP. Physical Review D, 2013, 88, .	4.7	13
82	Negative off-diagonal conductivities in a weakly coupled quark-gluon plasma at the leading-log order. Physical Review D, $2013, 88, .$	4.7	13
83	On the renormalization of entanglement entropy. AAPPS Bulletin, 2021, 31, 1.	6.1	13
84	Parity-violating quantum kinetic theory in (2+1) dimensions. Physical Review D, 2013, 88, .	4.7	12
85	Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors. Physical Review D, 2016, 93, .	4.7	12
86	Space- and time-like electromagnetic pion form factors in light-cone pQCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 693, 102-107.	4.1	11
87	Shear and bulk viscosities of a weakly coupled quark gluon plasma with finite chemical potential and temperature: Leading-log results. Physical Review D, 2013, 87, .	4.7	11
88	Minimum shear viscosity over entropy density at phase transition?â€"A counterexample. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 701, 327-331.	4.1	10
89	Constraints from a many-body method on spin-independent dark matter scattering off electrons using data from germanium and xenon detectors. Physical Review D, 2020, 102, .	4.7	10
90	Tensor polarized \hat{I}^3 -deuteron Compton scattering in effective field theory. Nuclear Physics A, 1999, 653, 375-385.	1.5	9

#	Article	IF	Citations
91	Soft pion emission in DVCS. Nuclear Physics A, 2004, 735, 441-448.	1.5	9
92	Deuteron Compton scattering in effective field theory: Spin-dependent cross sections and asymmetries. Physical Review C, 2005, 71, .	2.9	9
93	ππscattering in twisted mass chiral perturbation theory. Physical Review D, 2009, 79, .	4.7	9
94	Connecting the quenched and unquenched worlds via the large NcÂworld. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 543, 183-188.	4.1	8
95	Deuteron Compton scattering in effective field theory and spin-independent nucleon polarizabilities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 620, 33-41.	4.1	8
96	Drell–Hearn–Gerasimov sum-rule for the deuteron in nuclear effective field theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 603, 6-12.	4.1	7
97	Universal relations between non-Gaussian fluctuations in heavy-ion collisions. Physical Review D, 2017, 95, .	4.7	7
98	Towards searching for entangled photons in the CMB sky. Physical Review D, 2019, 99, .	4.7	6
99	Chiral perturbation for large momentum effective field theory. Physical Review D, 2021, 104, .	4.7	6
100	Model analysis on thermal UV-cutoff effects on the critical boundary in hot QCD. Physical Review D, 2010, 81 , .	4.7	5
101	Renormalon effects in quasiparton distributions. Physical Review D, 2021, 104, .	4.7	5
102	Model analysis of thermal UV-cutoff effects on the chiral critical surface at finite temperature and chemical potential. Physical Review D, $2011, 83, .$	4.7	3
103	Engineering holographic phase diagrams. Physical Review D, 2016, 94, .	4.7	3
104	Strong coupling expansion of the entanglement entropy of Yang-Mills gauge theories. Nuclear Physics B, 2020, 951, 114892.	2.5	3
105	Higgs boson production via the Bjorken processe+eâ^'â†'H0μ+μâ^'at high energye+eâ^'colliders. Physical Reviev D, 1994, 50, 4485-4490.	^N 4.7	2
106	Phase Transitions and the Perfectness of Fluids. Progress of Theoretical Physics Supplement, 2008, 174, 145-152.	0.1	2
107	Shear viscosity in weakly coupled <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -component scalar field theories. Physical Review D, 2011, 83, .	4.7	2
108	Bell inequality in the holographic EPR pair. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 791, 73-79.	4.1	2

#	ARTICLE	lF	CITATIONS
109	Entanglement Entropy and Quantum Phase Transition in the O(N) \parallel f-model. Journal of High Energy Physics, 2021, 2021, 1.	4.7	2
110	Gene-mating dynamic evolution theory: fundamental assumptions, exactly solvable models and analytic solutions. Theory in Biosciences, 2020, 139, 105-134.	1.4	1
111	Neutrino–deuteron scattering in effective field theory. Nuclear Physics A, 2001, 684, 484-486.	1.5	O
112	EFFECTIVE FIELD THEORY IN NUCLEAR ASTROPHYSICS. Modern Physics Letters A, 2004, 19, 1215-1222.	1.2	0
113	Effective Field Theory in Nuclear Astrophysics. , 2001, , .		O
114	GENERALIZED PARTON DISTRIBUTIONS IN EFFECTIVE FIELD THEORY., 2007,,.		0