Travis H Stracker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6534999/publications.pdf

Version: 2024-02-01

62 5,000 31 60 papers citations h-index g-index

71 71 71 6377
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Functional analysis of <i>TLK2</i> variants and their proximal interactomes implicates impaired kinase activity and chromatin maintenance defects in their pathogenesis. Journal of Medical Genetics, 2022, 59, 170-179.	3.2	9
2	Pathway-specific effects of ADSL deficiency on neurodevelopment. ELife, 2022, 11, .	6.0	7
3	Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death and Differentiation, 2022, 29, 1596-1610.	11.2	7
4	Transcriptional regulation of multiciliated cell differentiation. Seminars in Cell and Developmental Biology, 2021, 110, 51-60.	5.0	62
5	Loss of the abasic site sensor HMCES is synthetic lethal with the activity of the APOBEC3A cytosine deaminase in cancer cells. PLoS Biology, 2021, 19, e3001176.	5.6	25
6	Centrosome defects cause microcephaly by activating the 53BP1â€USP28â€TP53 mitotic surveillance pathway. EMBO Journal, 2021, 40, e106118.	7.8	39
7	LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells. Oncogene, 2020, 39, 79-121.	5.9	28
8	Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Reports, 2020, 32, 107983.	6.4	23
9	Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma, 2020, 129, 115-120.	2.2	5
10	The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cellular and Molecular Life Sciences, 2019, 76, 3827-3841.	5.4	32
11	Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1, MCIDAS or CCNO deficient mice. Development (Cambridge), 2019, 146, .	2.5	42
12	E2F4/5-mediated transcriptional control of multiciliated cell differentiation: redundancy or fine-tuning?. Developmental Biology, 2019, 446, 20-21.	2.0	4
13	EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. Nature Cell Biology, 2018, 20, 162-174.	10.3	31
14	Targeting p38 $\hat{l}\pm$ Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell, 2018, 33, 1094-1110.e8.	16.8	70
15	Molecular basis of Tousled-Like Kinase 2 activation. Nature Communications, 2018, 9, 2535.	12.8	24
16	EXD2: A new regulator of mitochondrial translation and potential target for cancer therapy. Molecular and Cellular Oncology, 2018, 5, e1445943.	0.7	0
17	Tousled-like kinases stabilize replication forks and show synthetic lethality with checkpoint and PARP inhibitors. Science Advances, 2018, 4, eaat4985.	10.3	40
18	CCNO mutations in NPH?. Aging, 2018, 10, 158-159.	3.1	2

#	Article	IF	CITATIONS
19	Positional Enrichment by Proton Analysis (PEPA): A Oneâ€Dimensional ¹ Hâ€NMR Approach for ¹³ C Stable Isotope Tracer Studies in Metabolomics. Angewandte Chemie - International Edition, 2017, 56, 3531-3535.	13.8	15
20	PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Scientific Reports, 2017, 7, 41962.	3.3	51
21	Innentitelbild: Positional Enrichment by Proton Analysis (PEPA): A Oneâ€Dimensional ¹ Hâ€NMR Approach for ¹³ C Stable Isotope Tracer Studies in Metabolomics (Angew. Chem. 13/2017). Angewandte Chemie, 2017, 129, 3446-3446.	2.0	1
22	Differential requirements for Tousled-like kinases 1 and 2 in mammalian development. Cell Death and Differentiation, 2017, 24, 1872-1885.	11.2	20
23	Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional 1 H-NMR Approach for 13 C Stable Isotope Tracer Studies in Metabolomics. Angewandte Chemie, 2017, 129, 3585-3589.	2.0	1
24	Chaperoning the <scp>DNA</scp> damage response. FEBS Journal, 2017, 284, 2375-2377.	4.7	3
25	Null diffusion-based enrichment for metabolomics data. PLoS ONE, 2017, 12, e0189012.	2.5	29
26	Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget, 2017, 8, 99261-99273.	1.8	33
27	<scp>GEMC</scp> 1 is a critical regulator of multiciliated cell differentiation. EMBO Journal, 2016, 35, 942-960.	7.8	91
28	NBS1 is required for macrophage homeostasis and functional activity in mice. Blood, 2015, 126, 2502-2510.	1.4	37
29	ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. ELife, 2015, 4, .	6.0	54
30	EXO1 is critical for embryogenesis and the DNA damage response in mice with a hypomorphic <i>Nbs1</i> li>allele. Nucleic Acids Research, 2015, 43, 7371-7387.	14.5	16
31	Systematic Identification of Molecular Links between Core and Candidate Genes in Breast Cancer. Journal of Molecular Biology, 2015, 427, 1436-1450.	4.2	24
32	CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nature Communications, 2015, 6, 7676.	12.8	96
33	USP28 Is Recruited to Sites of DNA Damage by the Tandem BRCT Domains of 53BP1 but Plays a Minor Role in Double-Strand Break Metabolism. Molecular and Cellular Biology, 2014, 34, 2062-2074.	2.3	46
34	Regulation of USP28 Deubiquitinating Activity by SUMO Conjugation. Journal of Biological Chemistry, 2014, 289, 34838-34850.	3.4	29
35	Aâ€ŧoâ€ŀ editing on tRNAs: Biochemical, biological and evolutionary implications. FEBS Letters, 2014, 588, 4279-4286.	2.8	113
36	The MRE11 complex: An important source of stress relief. Experimental Cell Research, 2014, 329, 162-169.	2.6	26

3

#	Article	IF	Citations
37	PrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication. Molecular Cell, 2013, 52, 566-573.	9.7	235
38	A Recessive Founder Mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, Underlies Severe Immunodeficiency and Features of Hoyeraal Hreidarsson Syndrome. PLoS Genetics, 2013, 9, e1003695.	3.5	106
39	Cep63 and Cep152 Cooperate to Ensure Centriole Duplication. PLoS ONE, 2013, 8, e69986.	2.5	83
40	The ATM signaling network in development and disease. Frontiers in Genetics, 2013, 4, 37.	2.3	129
41	Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9953-9958.	7.1	55
42	The MRE11 complex: starting from the ends. Nature Reviews Molecular Cell Biology, 2011, 12, 90-103.	37.0	612
43	Differential DNA damage signaling accounts for distinct neural apoptotic responses in ATLD and NBS. Genes and Development, 2009, 23, 171-180.	5.9	92
44	Artemis and Nonhomologous End Joining-Independent Influence of DNA-Dependent Protein Kinase Catalytic Subunit on Chromosome Stability. Molecular and Cellular Biology, 2009, 29, 503-514.	2.3	17
45	Taking the time to make important decisions: The checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair, 2009, 8, 1047-1054.	2.8	202
46	Roles for NBS1 in Alternative Nonhomologous End-Joining of $V(D)J$ Recombination Intermediates. Molecular Cell, 2009, 34, 13-25.	9.7	98
47	Chk2 Suppresses the Oncogenic Potential of DNA Replication-Associated DNA Damage. Molecular Cell, 2008, 31, 21-32.	9.7	58
48	Working together and apart: The twisted relationship of the Mre11 complex and Chk2 in apoptosis and tumor suppression. Cell Cycle, 2008, 7, 3618-3621.	2.6	11
49	The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature, 2007, 447, 218-221.	27.8	109
50	Adenovirus Type 5 E4orf3 Protein Targets the Mre11 Complex to Cytoplasmic Aggresomes. Journal of Virology, 2005, 79, 11382-11391.	3.4	102
51	Serotype-Specific Reorganization of the Mre11 Complex by Adenoviral E4orf3 Proteins. Journal of Virology, 2005, 79, 6664-6673.	3.4	86
52	Structural and functional analysis of Mre11-3. Nucleic Acids Research, 2004, 32, 1886-1893.	14.5	46
53	The Rep Protein of Adeno-Associated Virus Type 2 Interacts with Single-Stranded DNA-Binding Proteins That Enhance Viral Replication. Journal of Virology, 2004, 78, 441-453.	3.4	60
54	The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair, 2004, 3, 845-854.	2.8	234

#	Article	IF	CITATIONS
55	The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends in Cell Biology, 2003, 13, 458-462.	7.9	305
56	Roles of host cell factors in circularization of retroviral dna. Virology, 2003, 314, 460-467.	2.4	107
57	The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO Journal, 2003, 22, 6610-6620.	7.8	435
58	Characterization of the <l>AeaHP</l> Gene and its Expression in the Mosquito <l>Aedes aegypti</l> (Diptera: Culicidae). Journal of Medical Entomology, 2002, 39, 331-342.	1.8	30
59	Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex. Nature, 2002, 418, 348-352.	27.8	468
60	A genetic screen identifies a cellular regulator of adeno-associated virus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14991-14996.	7.1	23
61	Identification of a Steroidogenic Neurohormone in Female Mosquitoes. Journal of Biological Chemistry, 1998, 273, 3967-3971.	3.4	156
62	SAICAr-Dependent and Independent Effects of ADSL Deficiency on Neurodevelopment. SSRN Electronic Journal, 0, , .	0.4	0