Rickey Y Yada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6534084/publications.pdf

Version: 2024-02-01

237 papers

6,780 citations

39 h-index 70 g-index

248 all docs 248 docs citations

times ranked

248

6770 citing authors

#	Article	IF	CITATIONS
1	Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science and Technology, 2011, 22, 585-594.	15.1	413
2	ANTHOCYANINS AS FOOD COLORANTS ?A REVIEW. Journal of Food Biochemistry, 1987, 11, 201-247.	2.9	283
3	Transparency in food supply chains: A review of enabling technology solutions. Trends in Food Science and Technology, 2019, 91, 240-247.	15.1	266
4	Methodologies for Increasing the Resistant Starch Content of Food Starches: A Review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 1219-1234.	11.7	200
5	In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Research International, 2008, 41, 869-875.	6.2	140
6	CHILLING INJURY. A REVIEW OF POSSIBLE MECHANISMS. Journal of Food Biochemistry, 1989, 13, 127-153.	2.9	139
7	Physicochemical properties of starches during potato growth. Carbohydrate Polymers, 2003, 51, 213-221.	10.2	138
8	Low Temperature Sweetening in Susceptible and Resistant Potatoes: Starch Structure and Composition. Journal of Food Science, 1990, 55, 1054-1059.	3.1	137
9	Structure-function relationships of cowpea (Vigna unguiculata) globulin isolate: influence of pH and NaCl on physicochemical and functional properties. Food Chemistry, 1995, 53, 259-265.	8.2	135
10	Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochemical Journal, 1998, 335, 481-490.	3.7	129
11	Effect of Low Temperature Storage on Sugar Concentrations and Chip Color of Certain Processing Potato Cultivars and Selections. Journal of Food Science, 1987, 52, 639-645.	3.1	118
12	Physicochemical properties and in vitro starch digestibility of potato starch/protein blends. Carbohydrate Polymers, 2016, 154, 214-222.	10.2	118
13	Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—l. Isolation/purification and characterization. Food Chemistry, 1998, 62, 27-47.	8.2	111
14	Interactions of Vitamin D3with Bovine \hat{l}^2 -Lactoglobulin A and \hat{l}^2 -Casein. Journal of Agricultural and Food Chemistry, 2005, 53, 8003-8009.	5.2	106
15	Salt-soluble seed globulins of dicotyledonous and monocotyledonous plants II. Structural characterization. Food Chemistry, 1998, 63, 265-274.	8.2	91
16	Biotechnology or organic? Extensive or intensive? Global or local? A critical review of potential pathways to resolve the global food crisis. Trends in Food Science and Technology, 2016, 48, 78-87.	15.1	90
17	Engineered Nanoscale Food Ingredients: Evaluation of Current Knowledge on Material Characteristics Relevant to Uptake from the Gastrointestinal Tract. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 730-744.	11.7	85
18	CHILLING INJURY. A REVIEW OF QUALITY ASPECTS. Journal of Food Quality, 1988, 11, 253-278.	2.6	83

#	Article	IF	Citations
19	Feeding the world into the future – food and nutrition security: the role of food science and technology. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2016, 9, 155-166.	1.1	81
20	Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 831-836.	10.2	79
21	Changes in Compositional Parameters of Tubers of Potato (Solanum tuberosum) during Low-Temperature Storage and Their Relationship to Chip Processing Quality. Journal of Agricultural and Food Chemistry, 2002, 50, 4545-4553.	5.2	7 5
22	Structural characterization of a low-molecular-weight heteropolysaccharide (glucomannan) isolated from Artemisia sphaerocephala Krasch. Carbohydrate Research, 2012, 350, 31-39.	2.3	73
23	Studies of aggregation behaviours of cereal \hat{l}^2 -glucans in dilute aqueous solutions by light scattering: Part I. Structure effects. Food Hydrocolloids, 2011, 25, 189-195.	10.7	72
24	Scientific Integrity Principles and Best Practices: Recommendations from a Scientific Integrity Consortium. Science and Engineering Ethics, 2019, 25, 327-355.	2.9	70
25	A REVIEW: SEPARATION AND CHEMICAL PROPERTIES OF ANTHOCYANINS USED FOR THEIR QUALITATIVE AND QUANTITATIVE ANALYSIS. Journal of Food Biochemistry, 1987, 11, 279-308.	2.9	69
26	The structure and function of Saccharomyces cerevisiae proteinase A. Yeast, 2007, 24, 467-480.	1.7	69
27	Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings. Plant Physiology and Biochemistry, 1998, 36, 213-224.	5.8	68
28	The acute impact of ingestion of breads of varying composition on blood glucose, insulin and incretins following first and second meals. British Journal of Nutrition, 2009, 101, 391-398.	2.3	64
29	Contribution of Sucrose to Nonenzymatic Browning in Potato Chips Journal of Food Science, 1990, 55, 281-282.	3.1	56
30	Crystal Structures of the Histo-Aspartic Protease (HAP) from Plasmodium falciparum. Journal of Molecular Biology, 2009, 388, 520-540.	4.2	49
31	The dependence of the lipolytic activity of Rhizopus arrhizus lipase on surfactant concentration in Aerosol-OT/isooctane reverse micelles and its relationship to enzyme structure. BBA - Proteins and Proteomics, 1993, 1161, 66-72.	2.1	48
32	Effects of insect damage on glycoalkaloid content in potatoes (Solanum tuberosum). Journal of Agricultural and Food Chemistry, 1994, 42, 2545-2550.	5.2	48
33	Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food Research International, 2014, 57, 89-94.	6.2	48
34	Discoloration of Coleslaw Is Caused by Chlorophyll Degradation. Journal of Agricultural and Food Chemistry, 1996, 44, 395-398.	5.2	46
35	Relationship of hydrophobicity and solubility with some functional properties of cowpea (Vigna) Tj ETQq $1\ 1\ 0.78$	4314 rgB ³	Г/Qyerlock 1 -
36	Conformational properties of high molecular weight heteropolysaccharide isolated from seeds of Artemisia sphaerocephala Krasch. Food Hydrocolloids, 2013, 32, 155-161.	10.7	44

#	Article	IF	CITATIONS
37	Expression of soluble cloned porcine pepsinogen A in Escherichia coli. Biochemical Journal, 1996, 315, 443-446.	3.7	43
38	Correlation of physicochemical and nutritional properties of dry matter and starch in potatoes grown in different locations. Food Chemistry, 2011, 126, 1246-1253.	8.2	43
39	Chlorogenic acid isomers directly interact with Keap 1-Nrf2 signaling in Caco-2 cells. Molecular and Cellular Biochemistry, 2019, 457, 105-118.	3.1	42
40	Model-Based Classification via Mixtures of Multivariate <i>t</i> -Factor Analyzers. Communications in Statistics Part B: Simulation and Computation, 2012, 41, 510-523.	1.2	41
41	The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel. Food Chemistry, 2012, 133, 1214-1221.	8.2	40
42	The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis. Biochemical Journal, 2000, 349, 169-177.	3.7	39
43	Foaming behavior of mixed bovine serum albumin–protamine systems. Food Hydrocolloids, 2007, 21, 495-506.	10.7	38
44	ISOLATION AND CHARACTERIZATION OF ICE STRUCTURING PROTEINS FROM COLD-ACCLIMATED WINTER WHEAT GRASS EXTRACT FOR RECRYSTALLIZATION INHIBITION IN FROZEN FOODS. Journal of Food Biochemistry, 2007, 31, 139-160.	2.9	37
45	Kinetics of sugars, organic acids and acetaldehyde during simultaneous yeast-bacterial fermentations of white wine at different pH values. Food Research International, 2011, 44, 660-666.	6.2	37
46	Structure characterization of high molecular weight heteropolysaccharide isolated from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 742-746.	10.2	37
47	Effect of Processing Conditions on Phospholipase D Activity of Corn Kernel Subcellular Fractions. Journal of Agricultural and Food Chemistry, 1999, 47, 2579-2588.	5.2	36
48	Functional Profiling, Identification, and Inhibition of Plasmepsins in Intraerythrocytic Malaria Parasites. Angewandte Chemie - International Edition, 2009, 48, 8293-8297.	13.8	36
49	Structure and Mechanism of the Saposin-like Domain of a Plant Aspartic Protease. Journal of Biological Chemistry, 2011, 286, 28265-28275.	3.4	36
50	Use of principal component analysis to study the relationship between physical/chemical properties and the milk-clotting to proteolysis activity ratio of some aspartyl proteinases. Journal of Agricultural and Food Chemistry, 1986, 34, 675-679.	5.2	35
51	Aggregation behavior of Candida rugosa lipase. Food Research International, 1998, 31, 243-248.	6.2	35
52	Recombinant expression and partial characterization of an active soluble histo-aspartic protease from Plasmodium falciparum. Protein Expression and Purification, 2006, 49, 88-94.	1.3	35
53	Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum. Journal of Structural Biology, 2011, 175, 73-84.	2.8	35
54	Effect of chlorpropham (CIPC) on carbohydrate metabolism of potato tubers during storage. Food Research International, 2002, 35, 651-655.	6.2	34

#	Article	lF	CITATIONS
55	Post-harvest Storage of Potatoes. , 2009, , 339-370.		34
56	Impact of \hat{I}^3 -irradiation, CIPC treatment, and storage conditions on physicochemical and nutritional properties of potato starches. Food Chemistry, 2012, 133, 1188-1195.	8.2	34
57	The Effect of Thermal and Ultrasonic Treatment on Amino Acid Composition, Radical Scavenging and Reducing Potential of Hydrolysates Obtained from Simulated Gastrointestinal Digestion of Cowpea Proteins. Plant Foods for Human Nutrition, 2013, 68, 31-38.	3.2	34
58	Evaluation of nutritional profiles of starch and dry matter from early potato varieties and its estimated glycemic impact. Food Chemistry, 2016, 203, 356-366.	8.2	34
59	Study of the charge profile and covalent subunit association of the oligomeric seed globulin from Amaranthus hypochondriacus. Journal of Agricultural and Food Chemistry, 1992, 40, 385-389.	5.2	33
60	Soluble expression and purification of porcine pepsinogen from Pichia pastoris. Protein Expression and Purification, 2002, 25, 229-236.	1.3	33
61	Multifunctional aspartic peptidase prosegments. New Biotechnology, 2009, 25, 318-324.	4.4	33
62	Genotype by Environment Interaction Effects on Starch Content and Digestibility in Potato (Solanum) Tj ETQq0	0 0 ₅ .2BT /	Ovgrjock 10 T
63	Starch properties of various potato (Solanum tuberosum L) Cultivars susceptible and resistant to low-temperature sweetening. Journal of the Science of Food and Agriculture, 1991, 56, 385-397.	3.5	32
64	Membrane lipid dynamics and lipid peroxidation in the early stages of low-temperature sweetening in tubers of Solanum tuberosum. Physiologia Plantarum, 1998, 102, 396-410.	5.2	32
65	Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food and Function, 2013, 4, 777.	4.6	32
66	The relationship between respiration and chip color during long-term storage of potato tubers. American Journal of Potato Research, 2000, 77, 279-287.	0.9	31
67	Quaternary Structure and Model for the Oligomeric Seed Globulin from Amaranthus hypochondriacus K343. Journal of Agricultural and Food Chemistry, 1994, 42, 2675-2678.	5. 2	30
68	Functional Properties of Whey-Potato Protein Composite Blends in a Model System. Journal of Food Science, 1988, 53, 1427-1432.	3.1	29
69	Amaranth as a rich dietary source of \hat{l}^2 -sitosterol and other phytosterols. Plant Foods for Human Nutrition, 2003, 58, 207-211.	3.2	29
70	Secondary structure prediction and determination of proteins $\hat{a} \in \mathbb{Z}$ a review. International Journal of Peptide and Protein Research, 1988, 31, 98-108.	0.1	29
71	Comparison of Solution Structures and Stabilities of Native, Partially Unfolded and Partially Refolded Pepsin. Biochemistry, 2006, 45, 13982-13992.	2.5	28
72	Apical Na ⁺ - <scp>d</scp> -glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig. American Journal of Physiology - Renal Physiology, 2011, 300, G60-G70.	3.4	28

#	Article	IF	CITATIONS
73	Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors. Scientific Reports, 2016, 6, 31420.	3.3	28
74	Genotype by environment interaction effects on fibre components in potato (Solanum tuberosum L.). Euphytica, 2012, 187, 77-86.	1.2	27
75	Isolation, Purification, and Characterization of the Oligomeric Seed Globulin from Amaranthus hypochondriacus Agricultural and Biological Chemistry, 1991, 55, 2281-2289.	0.3	26
76	Some Physicochemical and Functional Properties of Cowpea (Vigna Unguiculata) Isoelectric Protein Isolate as a Function of PH and Salt Concentration. International Journal of Food Sciences and Nutrition, 1997, 48, 31-39.	2.8	26
77	N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH. Protein Engineering, Design and Selection, 2001, 14, 669-674.	2.1	26
78	SECONDARY STRUCTURE OF SOME ASPARTYL PROTEINASES. Journal of Food Biochemistry, 1986, 10, 155-183.	2.9	25
79	Tomato Peroxidase: Rapid Isolation and Partial Characterization. Journal of Food Science, 1989, 54, 1269-1271.	3.1	24
80	Respiratory Enzyme Activity in Low Temperature Sweetening of Susceptible and Resistant Potatoes. Journal of Food Science, 1990, 55, 1060-1063.	3.1	24
81	Purification and characterization of the physicochemical properties of the albumin fraction from the seeds of Amaranthus hypochondriacus. Food Chemistry, 1994, 51, 287-294.	8.2	24
82	A mechanism for low temperature induced sugar accumulation in stored potato tubers: The potential role of the alternative pathway and invertase. American Potato Journal, 1996, 73, 483-494.	0.3	24
83	Engineered Porcine Pepsinogen Exhibits Dominant Unimolecular Activation. Archives of Biochemistry and Biophysics, 1997, 340, 355-358.	3.0	24
84	Effect of N-linked glycosylation on the aspartic proteinase porcine pepsin expressed from Pichia pastoris. Glycobiology, 2004, 14, 417-429.	2.5	24
85	Expression and enzymatic characterization of the soluble recombinant plasmepsin I from Plasmodium falciparum. Protein Engineering, Design and Selection, 2007, 20, 625-633.	2.1	24
86	Contribution of a prosegment lysine residue to the function and structure of porcine pepsinogena \in fA and its active form pepsin A. FEBS Journal, 1999, 261, 746-752.	0.2	23
87	Characterization of Thermal Properties of Potato Dry Matter–Water and Starch–Water Systems. Journal of Food Science, 2002, 67, 560-566.	3.1	23
88	Evolution of amylopectin structure in developing wheat endosperm starch. Carbohydrate Polymers, 2014, 112, 316-324.	10.2	22
89	Biomedical NiTi and \hat{I}^2 -Ti Alloys: From Composition, Microstructure and Thermo-Mechanics to Application. Metals, 2022, 12, 406.	2.3	21
90	The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis. Biochemical Journal, 2000, 349, 169.	3.7	20

#	Article	IF	Citations
91	Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry, 2010, 71, 515-523.	2.9	20
92	On the differences in the granular architecture and starch structure between pericarp and endosperm wheat starches. Starch/Staerke, 2013, 65, 791-800.	2.1	20
93	The zymogen of plasmepsin V from Plasmodium falciparum is enzymatically active. Molecular and Biochemical Parasitology, 2014, 197, 56-63.	1.1	20
94	Nanochemistry of Protein-Based Delivery Agents. Frontiers in Chemistry, 2016, 4, 31.	3.6	20
95	Physicochemical properties and inÂvitro digestibility of potato starch after inclusion with vanillic acid. LWT - Food Science and Technology, 2017, 85, 218-224.	5.2	20
96	Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2534-2559.	11.7	20
97	Comparison of conformations of κ-casein, para-κ-casein and glycomacropeptide. BBA - Proteins and Proteomics, 1987, 911, 318-325.	2.1	19
98	Potential for improvement by selection for reducing sugar content after cold storage for three potato populations. Theoretical and Applied Genetics, 1994, 88, 678-684.	3.6	19
99	Physico-chemical Properties of Purified Isoforms of the 12S Seed Globulin from Mustard Seed (<i>Brassica alba</i>). Bioscience, Biotechnology and Biochemistry, 1997, 61, 65-74.	1.3	19
100	A proposed role for the anaerobic pathway during low-temperature sweetening in tubers of Solanum tuberosum. Physiologia Plantarum, 2003, 118, 206-212.	5.2	19
101	The Prosegment Catalyzes Pepsin Folding to a Kinetically Trapped Native State. Biochemistry, 2010, 49, 365-371.	2.5	19
102	Influence of geography, seasons and pedology on chemical composition and anti-inflammatory activities of essential oils from Lippia multiflora Mold leaves. Journal of Ethnopharmacology, 2016, 194, 587-594.	4.1	19
103	In Silico Insights into Protein-Protein Interactions and Folding Dynamics of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease. PLoS ONE, 2014, 9, e104315.	2.5	19
104	A kinetic and equilibrium study of the denaturation of aspartic proteinases from the fungi, Endothia parasitica and Mucor miehei. BBA - Proteins and Proteomics, 1991, 1076, 406-415.	2.1	18
105	The Sole Lysine Residue in Porcine Pepsin Works As a Key Residue for Catalysis and Conformational Flexibility. Journal of Biological Chemistry, 1995, 270, 19974-19978.	3.4	18
106	Roles of alcohol dehydrogenase, lactate dehydrogenase and pyruvate decarboxylase in low-temperature sweetening in tolerant and susceptible varieties of potato (Solanum tuberosum). Physiologia Plantarum, 2007, 130, 230-239.	5.2	18
107	Expression and characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry, 2008, 69, 2439-2448.	2.9	18
108	Alleviation of low temperature sweetening in potato by expressing Arabidopsis pyruvate decarboxylase gene and stress-inducible rd29A: A preliminary study. Physiology and Molecular Biology of Plants, 2011, 17, 105-114.	3.1	18

#	Article	IF	CITATION
109	Horizon scanning and review of the impact of five food and food production models for the global food system in 2050. Trends in Food Science and Technology, 2022, 119, 550-564.	15.1	18
110	Resolving nanoscopic structuring and interfacial THz dynamics in setting cements. Materials Advances, 2022, 3, 4982-4990.	5.4	18
111	Isolation of Soybean 11S Globulin by Isoelectric Precipitation and Sephacryl S-300 Gel Filtration Chromatography: A New Purification Technique. Bioscience, Biotechnology and Biochemistry, 1994, 58, 413-415.	1.3	17
112	Immunochemical examination of the surface physico-chemical properties of various dicotyledonous and monocotyledonous globulin seed storage proteins. Food Chemistry, 1998, 63, 85-95.	8.2	17
113	Kinetic model for carbon partitioning in Solanum tuberosum tubers stored at $2\hat{A}^{\circ}C$ and the mechanism for low temperature stress-induced accumulation of reducing sugars. Biophysical Chemistry, 1997, 65, 211-220.	2.8	16
114	Structural analysis of globulins isolated from genetically different Amaranthus hybrid lines. Food Chemistry, 1998, 61, 319-326.	8.2	16
115	Dynamics of Thermodynamically Stable, Kinetically Trapped, and Inhibitor-Bound States of Pepsin. Biophysical Journal, 2011, 101, 1699-1709.	0.5	16
116	Randomized controlled trial assessing the efficacy of a reusable fish-shaped iron ingot to increase hemoglobin concentration in anemic, rural Cambodian women. American Journal of Clinical Nutrition, 2017, 106, 667-674.	4.7	16
117	Functional Properties of Whey-Pea Protein Composite Blends in a Model System. Journal of Food Science, 1989, 54, 1287-1292.	3.1	15
118	Low Temperature Sweetening in Potato Tubers: the Role of the Amyloplast Membrane. Journal of Plant Physiology, 1995, 145, 335-341.	3.5	15
119	Construction, expression and characterization of a chimaeric mammalian-plant aspartic proteinase. Biochemical Journal, 2003, 372, 671-678.	3.7	15
120	Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from <i>Plasmodium falciparum</i> . Biochemistry, 2011, 50, 8862-8879.	2.5	15
121	Effects of diet and exercise interventions on diabetes risk factors in adults without diabetes: meta-analyses of controlled trials. Diabetology and Metabolic Syndrome, 2014, 6, 127.	2.7	15
122	Some Biochemical Changes in Sarcoplasmic Depleted, Intact Beef Muscle Inoculated with Pseudomonas frari. Journal of Food Science, 1981, 46, 1766-1773.	3.1	14
123	Chemical Modification of Amino Groups in Mucor miehei Aspartyl Proteinase, Porcine Pepsin, and Chymosin. I. Structure and Function Agricultural and Biological Chemistry, 1991, 55, 2009-2016.	0.3	14
124	Chloroplast Membrane Organization in Chilling Tolerant and Chilling-Sensitive Maize Seedlings. Journal of Plant Physiology, 1999, 155, 691-698.	3.5	14
125	Characterization of the proteins of pili nut (Canarium ovatum, Engl.). Plant Foods for Human Nutrition, 2002, 57, 107-120.	3.2	14
126	The catalytic significance of the proposed active site residues in ⟨i⟩Plasmodium falciparum⟨/i⟩ histoaspartic protease. FEBS Journal, 2008, 275, 1698-1707.	4.7	14

#	Article	IF	CITATIONS
127	Stability of eight potato genotypes for sugar content and French fry quality at harvest and after storage. Canadian Journal of Plant Science, 2012, 92, 87-96.	0.9	14
128	Effect of a microbial calcium-independent transglutaminase on functional properties of a partially purified cowpea (vigna unguiculata) globulin. Journal of the Science of Food and Agriculture, 1999, 79, 286-290.	3.5	13
129	N-Terminal Modifications Increase the Neutral-pH Stability of Pepsinâ€. Biochemistry, 2003, 42, 13331-13338.	2.5	13
130	Understanding the structure–function role of specific catalytic residues in a model food related enzyme: Pepsin. Enzyme and Microbial Technology, 2007, 40, 1175-1180.	3.2	13
131	Influence of an Electric Field on Oriented Films of DMPC/Gramicidin Bilayers: A Circular Dichroism Study. Langmuir, 2010, 26, 1057-1066.	3.5	13
132	Study of conformational properties of cereal \hat{l}^2 -glucans by computer modeling. Food Hydrocolloids, 2012, 26, 377-382.	10.7	13
133	Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells. Journal of Nutritional Biochemistry, 2021, 98, 108815.	4.2	13
134	The effect of maleic hydrazide (potassium salt) on potato yield, sugar content and chip color of Kennebec and Norchip cultivars. American Potato Journal, 1991, 68, 705-709.	0.3	12
135	Biophysical evaluation of milk-clotting enzymes processed by high pressure. Food Research International, 2017, 97, 116-122.	6.2	12
136	Structural and Functional Properties of a Partially Purified Cowpea (Vigna unguiculata) Globulin Modified with Protein Kinase and Glycopeptidase. Journal of Agricultural and Food Chemistry, 1997, 45, 2907-2913.	5.2	11
137	Marker Assisted Selection of Potato Clones that Process with Light Chip Color. American Journal of Potato Research, 2008, 85, 227-231.	0.9	11
138	Molecular and thermal characterization of starches isolated from African rice (O <i>ryza) Tj ETQq0 0 0 rgBT /Over</i>	lock ₁ 10 Tf	50 ₁ 302 Td (g
139	Deciphering the mechanism of potent peptidomimetic inhibitors targeting plasmepsins – biochemical and structural insights. FEBS Journal, 2018, 285, 3077-3096.	4.7	11
140	A novel apparatus for time-lapse optical microscopy of gelatinisation and digestion of starch inside plant cells. Food Hydrocolloids, 2020, 104, 105551.	10.7	11
141	Purification of two fungal aspartic proteinases using fast protein liquid chromatography Agricultural and Biological Chemistry, 1990, 54, 1563-1565.	0.3	10
142	Inheritance patterns of reducing sugars in potato tubers after storage at 12 C and 4 C followed by reconditioning. American Potato Journal, 1993, 70, 71-76.	0.3	10
143	The relationship of chip color with structural parameters of starch. American Potato Journal, 1996, 73, 545-558.	0.3	10
144	EVIDENCE FOR THE PHOSPHORYLATION AND GLYCOSYLATION OF THE AMARANTH 11S GLOBULIN (AMARANTHIN). Journal of Food Biochemistry, 1997, 21, 341-369.	2.9	10

#	Article	IF	CITATIONS
145	Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1795-1801.	2.3	10
146	Rheological and structural properties of starches from \hat{I}^3 -irradiated and stored potatoes. Carbohydrate Polymers, 2012, 87, 69-75.	10.2	10
147	Milk-clotting activity of high pressure processed coagulants: Evaluation at different pH and temperatures and pH influence on the stability. Innovative Food Science and Emerging Technologies, 2018, 47, 384-389.	5.6	10
148	Structures of plasmepsin X from <i>Plasmodium falciparum</i> reveal a novel inactivation mechanism of the zymogen and molecular basis for binding of inhibitors in mature enzyme. Protein Science, 2022, 31, 882-899.	7.6	10
149	MULTIVARIATE ANALYSIS OF STRUCTURE-RELATED DATA TO EXPLAIN MILK CLOTTING ACTIVITY OF PROTEOLYTIC ENZYMES. Journal of Food Biochemistry, 1987, 11, 121-132.	2.9	9
150	Starch Gelatinization in Cold Temperature Sweetening Resistant Potatoes. Journal of Food Science, 1990, 55, 1338-1340.	3.1	9
151	Effect of Selection for Chip Colour on Some Economic Traits of Potatoes. Plant Breeding, 1994, 113, 312-317.	1.9	9
152	Inheritance of the response of fry color to low temperature storage. American Journal of Potato Research, 2003, 80, 341-344.	0.9	9
153	Electron Microscopic Investigation ofPseudomonas fragiATCC 4973 on Intact and Sarcoplasm-Depleted Bovine Longissimus dorsi Muscle at 21°C. Journal of Food Science, 1983, 48, 475-478.	3.1	8
154	Optimization of the immobilization of milkâ€clotting proteases to granular bone. Food Biotechnology, 1988, 2, 43-65.	1.5	8
155	Characterization of the kinetics of breakdown of protein stabilized oil in water emulsions. Journal of Agricultural and Food Chemistry, 1989, 37, 600-604.	5.2	8
156	ISOLATION, PURIFICATION AND CHARACTERIZATION OF THE SEED STORAGE GLOBULIN AND ITS POLYMERIZED FORM FROM TRITICUM AESTIVUM. Journal of Food Biochemistry, 1994, 18, 123-145.	2.9	8
157	Low-temperature stress induces transient oscillations in sucrose metabolism in Solanum tuberosum. Biophysical Chemistry, 1996, 61, 177-184.	2.8	8
158	SULFHYDRYL AND DISULFIDE GROUPS OF THE OLIGOMERIC SEED GLOBULIN FROM AMARANTHUS HYPOCHONDRIACUS K343. Journal of Food Biochemistry, 1997, 21, 255-272.	2.9	8
159	Evidence for a molten globule state in an oligomeric plant protein. Food Chemistry, 1997, 60, 623-631.	8.2	8
160	The effect of thermal processing and storage on the physicochemical properties and <i>inÂvitro</i> digestibility of potatoes. International Journal of Food Science and Technology, 2016, 51, 2233-2241.	2.7	8
161	Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1008-1018.	2.6	8
162	Roles of Plant-Specific Inserts in Plant Defense. Trends in Plant Science, 2020, 25, 682-694.	8.8	8

#	Article	IF	Citations
163	Some Functional Properties of a Cowpea <i>(Vigna unguiculata)</i> (i) Globulin Isolate Treated with Transglutaminase. Bioscience, Biotechnology and Biochemistry, 1995, 59, 2298-2299.	1.3	7
164	Visions in the mist: The zeitgeist of food protein imaging by electron microscopy. Trends in Food Science and Technology, 1995, 6, 265-270.	15.1	7
165	Characterization of the monomer–dimer equilibrium of recombinant histo-aspartic protease from Plasmodium falciparum. Molecular and Biochemical Parasitology, 2010, 173, 17-24.	1.1	7
166	Effect of genetic modification and storage on the physico-chemical properties of potato dry matter and acrylamide content of potato chips. Food Research International, 2012, 49, 7-14.	6.2	7
167	Understanding the Mechanism of Prosegment-catalyzed Folding by Solution NMR Spectroscopy. Journal of Biological Chemistry, 2014, 289, 697-707.	3.4	7
168	Postharvest Storage of Potatoes. , 2016, , 283-314.		7
169	Protein Structure Insights into the Bilayer Interactions of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease. Scientific Reports, 2017, 7, 16911.	3.3	7
170	Comparative bioinformatic and structural analyses of pepsin and renin. Enzyme and Microbial Technology, 2020, 141, 109632.	3.2	7
171	Isolation, Purification, and Characterization of the Oligomeric Seed Globulin fromAmaranthus hypochondriacus. Agricultural and Biological Chemistry, 1991, 55, 2281-2289.	0.3	6
172	Reduction of negative charge in the aspartyl proteinase from the fungus Mucor miehei by chemical modification of carboxyl groups: effect on structure-function. Journal of Agricultural and Food Chemistry, 1992, 40, 3-8.	5. 2	6
173	Redesign of catalytic center of an enzyme: aspartic to serine proteinase. Biochemical and Biophysical Research Communications, 2004, 323, 947-953.	2.1	6
174	Conserved Prosegment Residues Stabilize a Late-Stage Folding Transition State of Pepsin Independently of Ground States. PLoS ONE, 2014, 9, e101339.	2.5	6
175	A molecular modeling approach to understand the structure and conformation relationship of (Glc p) Tj ETQq1 1	0.784314 10.2	rgBT /Overl
176	Protein engineering: Methodology, applications and status. Food Biotechnology, 1987, 1, 167-223.	1.5	5
177	Chemical Modification of Amino Groups in Mucor miehei Aspartyl Proteinase, Porcine Pepsin, and Chymosin. II. Conformational Stability Agricultural and Biological Chemistry, 1991, 55, 2017-2024.	0.3	5
178	EFFECT OF TWO POLAR ORGANIC-AQUEOUS SOLVENT SYSTEMS ON THE STRUCTURE-FUNCTION RELATIONSHIPS OF PROTEASES III. PAPAIN AND TRYPSIN. Journal of Food Biochemistry, 1993, 17, 389-405.	2.9	5
179	Functional chimera of porcine pepsin prosegment and Plasmodium falciparum plasmepsin II. Protein Engineering, Design and Selection, 2010, 23, 19-26.	2.1	5
180	The native conformation of plasmepsin II is kinetically trapped at neutral pH. Archives of Biochemistry and Biophysics, 2011, 513, 102-109.	3.0	5

#	Article	IF	Citations
181	Influence of aggregation on the antioxidative capacity of milk peptides. International Dairy Journal, 2012, 25, 3-9.	3.0	5
182	Insights into the mechanism of membrane fusion induced by the plant defense element, plant-specific insert. Journal of Biological Chemistry, 2020, 295, 14548-14562.	3.4	5
183	The concept and development of management profiles for potato cultivars and selections. American Potato Journal, 1990, 67, 527-535.	0.3	4
184	LIPOPHILIZATION OF MUCOR MIEHEI ASPARTYL PROTEINASE: EFFECT ON STRUCTURE-FUNCTION AND STABILITY. Journal of Food Biochemistry, 1991, 15, 331-346.	2.9	4
185	ISOLATION OF MUCOR MIEHEI AND M. PUSILLUS ASPARTIC PROTEINASES FROM PARTIALLY PURIFIED SOURCES USING PREPARATIVE ISOELECTRIC FOCUSING. Journal of Food Biochemistry, 1991, 15, 347-374.	2.9	4
186	Some Functional Properties of an Enzymatically Phosphorylated Cowpea (Vigna unguiculata)Globulin Isolate. Bioscience, Biotechnology and Biochemistry, 1995, 59, 2207-2209.	1.3	4
187	Title is missing!. Biotechnology Letters, 2000, 22, 1515-1520.	2.2	4
188	Carbanilation of cereal \hat{l}^2 -glucans for molecular weight determination and conformational studies. Carbohydrate Research, 2007, 342, 1434-1441.	2.3	4
189	pH dependent membrane binding of the Solanum tuberosum plant specific insert: An in silico study. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2608-2618.	2.6	4
190	Food Safety and Preservation. , 2020, , 467-479.		4
191	The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics. PLoS ONE, 2020, 15, e0237884.	2.5	4
192	Purification of Two Fungal Aspartic Proteinases Using Fast Protein Liquid Chromatography. Agricultural and Biological Chemistry, 1990, 54, 1563-1565.	0.3	3
193	Spin-labelling and Differential Scanning Calorimetry Study of the Denaturation of Aspartic Proteinases from the Fungi Endothia parasitica and Mucor miehei Agricultural and Biological Chemistry, 1991, 55, 1639-1641.	0.3	3
194	Chemical Modification of Amino Groups in Mucor miehei Aspartyl Proteinase, Porcine Pepsin, and Chymosin. II. Conformational Stability. Agricultural and Biological Chemistry, 1991, 55, 2017-2024.	0.3	3
195	A PROPOSED MECHANISM FOR THE CRYOAGGREGATION OF THE SEED STORAGE GLOBULIN AND ITS POLYMERIZED FORM FROM TRITICUM AESTIVUM. Journal of Food Biochemistry, 1994, 18, 147-163.	2.9	3
196	Rational redesign of porcine pepsinogen containing an antimicrobial peptide. Protein Engineering, Design and Selection, 2010, 23, 711-719.	2.1	3
197	International Conference on Food and Agriculture Applications of Nanotechnologies, NanoAgri 2010, São Pedro, SP, Brazil, June 20 to 25, 2010. Trends in Food Science and Technology, 2011, 22, 583-584.	15.1	3
198	Towards the rational design of foods: The 4th delivery of functionality in complex foods conference. Food and Function, 2012, 3, 200.	4.6	3

#	Article	IF	Citations
199	The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1356-1362.	2.3	3
200	Activation mechanism of plasmepsins, pepsinâ€like aspartic proteases from Plasmodium, follows a unique transâ€activation pathway. FEBS Journal, 2021, 288, 678-698.	4.7	3
201	Saginaw Gold: A yellow-fleshed potato cultivar with medium-high specific gravity and excellent chip and french fry quality after storage. American Potato Journal, 1989, 66, 303-313.	0.3	2
202	A histological examination of "white knot―disorder in tubers of the cultivar Atlantic. American Potato Journal, 1989, 66, 489-493.	0.3	2
203	EFFECT OF TWO POLAR ORGANIC-AQUEOUS SOLVENT SYSTEMS ON THE STRUCTURE-FUNCTION RELATIONSHIP OF PROTEASES I. PEPSIN. Journal of Food Biochemistry, 1993, 17, 353-369.	2.9	2
204	Genetic advance for chip colour in potatoes. Euphytica, 1995, 84, 133-138.	1.2	2
205	Foldase and inhibitor functionalities of the pepsinogen prosegment are encoded within discrete segments of the 44 residue domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1300-1306.	2.3	2
206	Improving the alkaline stability of pepsin through rational protein design using renin, an alkaline-stable aspartic protease, as a structural and functional reference. Enzyme and Microbial Technology, 2021, 150, 109871.	3.2	2
207	The Effect of Potato Varieties and Processing Methods on Glycemic Response. American Journal of Plant Sciences, 2020, 11, 1144-1162.	0.8	2
208	Negatively charged phospholipids accelerate the membrane fusion activity of the plant-specific insert domain of an aspartic protease. Journal of Biological Chemistry, 2022, 298, 101430.	3.4	2
209	Predicting global diet-disease relationships at the atomic level: a COVID-19 case study. Current Opinion in Food Science, 2022, 44, 100804.	8.0	2
210	The effect of scion and stock autografting and heterografting on specific gravity, sugar content and chip color of potatoes. American Potato Journal, 1988, 65, 141-145.	0.3	1
211	Chemical Modification of Amino Groups inMucor mieheiAspartyl Proteinase, Porcine Pepsin, and Chymosin. I. Structure and Function. Agricultural and Biological Chemistry, 1991, 55, 2009-2016.	0.3	1
212	Prosegment Catalyzes Pepsin Folding to a Kinetically Trapped Native State. Biophysical Journal, 2009, 96, 82a.	0.5	1
213	The Advanced Foods and Materials Network: A Canadian portal to excellence in innovative food science and technology. Trends in Food Science and Technology, 2011, 22, 476-479.	15.1	1
214	1H, 13C, and 15N backbone resonance assignments of the porcine pepsin and porcine pepsin complexed with pepstatin. Biomolecular NMR Assignments, 2014, 8, 57-61.	0.8	1
215	Advances on the Production and Application of Peptides for Promoting Human Health and Food Security., 2017,, 195-219.		1
216	472 Effects of Low-temperature Storage on Carbohydrate Metabolism in Potato Tubers. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 526B-526.	1.0	1

#	Article	IF	CITATIONS
217	Eramosa: A white-fleshed, first early, tablestock potato cultivar. American Potato Journal, 1989, 66, 293-302.	0.3	o
218	Spin-labelling and Differential Scanning Calorimetry Study of the Denaturation of Aspartic Proteinases from the Fungi <i>Endothia parasitica</i> Biological Chemistry, 1991, 55, 1639-1641.	0.3	0
219	EFFECT OF TWO POLAR ORGANIC-AQUEOUS SOLVENT SYSTEMS ON THE STRUCTURE-FUNCTION RELATIONSHIPS OF PROTEASES II. CHYMOSIN AND MUCOR MIEHEI PROTEINASE. Journal of Food Biochemistry, 1993, 17, 371-387.	2.9	O
220	Banana: A yellow-fleshed fingerling type potato for home garden production. American Potato Journal, 1993, 70, 1-5.	0.3	0
221	Plant biology and food science in Canada: a vision for the future. Canadian Journal of Botany, 1998, 76, 355-364.	1.1	0
222	Use of Enzyme Kinetic Data in the Study of Structure–Function Relationships of Proteins. , 0, , 193-216.		0
223	Characterization of the Monomer-Dimer Equilibrium of Recombinant Histo-aspartic Protease from Plasmodium falciparum. Biophysical Journal, 2009, 96, 439a.	0.5	О
224	An Investigation Of Gastric-like Aspartic Proteinase Molecular Chimeras. Biophysical Journal, 2009, 96, 331a.	0.5	0
225	Influence des proc \tilde{A} ©d \tilde{A} ©s de cuisson sur la composition nutritionnelle et la digestibilit \tilde{A} © de la pomme de terre. Cahiers De Nutrition Et De Dietetique, 2010, 45, S37-S43.	0.3	O
226	Neutron scattering and the folding and dynamics of the digestive enzyme pepsin. Neutron News, 2012, 23, 29-32.	0.2	0
227	Food Science and Technology Undergraduate and Graduate Curricula in North America. , 2017, , 237-245.		O
228	FOREWORD AND PREFACE. Acta Horticulturae, 2003, , 5-5.	0.2	0
229	Structure–Function Relationships of Aspartic Proteinases. , 2004, , 227-264.		O
230	Expression of the sodiumâ€glucose cotransporter SGLT1 gene along the jejunal cryptâ€villus axis measured by quantitative real time RTâ€PCR in the formulaâ€fed neonatal pig. FASEB Journal, 2006, 20, A1053.	0.5	0
231	(183) Quality and Shelf Life of Greenhouse Tomatoes Exposed to 1-Methylcyclopropene. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1017C-1017.	1.0	0
232	Crystal structure of histoâ€aspartic protease (HAP) from Plasmodium falciparum. FASEB Journal, 2009, 23, 675.4.	0.5	0
233	Plant biology and food science in Canada: a vision for the future. Canadian Journal of Botany, 1998, 76, 355-364.	1.1	0
234	Title is missing!. , 2020, 15, e0237884.		0

#	Article	IF	CITATIONS
235	Title is missing!. , 2020, 15, e0237884.		0
236	Title is missing!. , 2020, 15, e0237884.		0
237	Title is missing!. , 2020, 15, e0237884.		O