Hidetoshi Saze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6533591/publications.pdf Version: 2024-02-01

HIDETOSHI SAZE

#	Article	IF	CITATIONS
1	<i>De novo</i> genome assembly and <i>in natura</i> epigenomics reveal salinityâ€induced DNA methylation in the mangrove tree <i>Bruguiera gymnorhiza</i> . New Phytologist, 2022, 233, 2094-2110.	7.3	25
2	Development of a male specific genetic marker for Garcinia subelliptica Merr. tree. Journal of Forest Research, 2021, 26, 222-229.	1.4	2
3	De Novo Transcriptome Assembly, Functional Annotation, and Transcriptome Dynamics Analyses Reveal Stress Tolerance Genes in Mangrove Tree (Bruguiera gymnorhiza). International Journal of Molecular Sciences, 2021, 22, 9874.	4.1	3
4	The First De Novo Transcriptome Assembly and Transcriptomic Dynamics of the Mangrove Tree Rhizophora stylosa Griff. (Rhizophoraceae). International Journal of Molecular Sciences, 2021, 22, 11964.	4.1	5
5	Epigenetic inheritance and plant evolution. Population Ecology, 2020, 62, 17-27.	1.2	55
6	miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nature Communications, 2020, 11, 3115.	12.8	62
7	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genetics, 2020, 16, e1008637.	3.5	23
8	Epigenetic regulation of spurious transcription initiation in Arabidopsis. Nature Communications, 2020, 11, 3224.	12.8	35
9	Rice Histone Propionylation and Generation of Chemically Derivatized Synthetic H3 and H4 Peptides for Identification of Acetylation Sites and Quantification. Methods in Molecular Biology, 2020, 2093, 81-92.	0.9	0
10	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. , 2020, 16, e1008637.		0
11	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. , 2020, 16, e1008637.		0
12	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. , 2020, 16, e1008637.		0
13	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. , 2020, 16, e1008637.		0
14	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. , 2020, 16, e1008637.		0
15	Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. , 2020, 16, e1008637.		0
16	Epigenetic regulation of intragenic transposable elements: a two-edged sword. Journal of Biochemistry, 2018, 164, 323-328.	1.7	12
17	Epigenetic Regulation of Intronic Transgenes in Arabidopsis. Scientific Reports, 2017, 7, 45166.	3.3	18
18	Epigenetic Control of Defense Signaling and Priming in Plants. Frontiers in Plant Science, 2016, 7, 1201.	3.6	139

HIDETOSHI SAZE

#	Article	IF	CITATIONS
19	A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity. Scientific Reports, 2016, 6, 23181.	3.3	106
20	Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Research, 2015, 43, 3911-3921.	14.5	86
21	Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis. PLoS Genetics, 2015, 11, e1005154.	3.5	56
22	DNA Methylation within Transcribed Regions. Plant Physiology, 2015, 168, 1219-1225.	4.8	64
23	Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nature Communications, 2013, 4, 2301.	12.8	82
24	Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes and Genetic Systems, 2012, 87, 145-152.	0.7	20
25	DNA Methylation in Plants: Relationship to Small RNAs and Histone Modifications, and Functions in Transposon Inactivation. Plant and Cell Physiology, 2012, 53, 766-784.	3.1	177
26	RNAiâ€independent <i>de novo</i> DNA methylation revealed in Arabidopsis mutants of chromatin remodeling gene <i>DDM1</i> . Plant Journal, 2012, 70, 750-758.	5.7	34
27	Differentiation of epigenetic modifications between transposons and genes. Current Opinion in Plant Biology, 2011, 14, 81-87.	7.1	115
28	Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. EMBO Journal, 2010, 29, 3496-3506.	7.8	127
29	An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO Journal, 2009, 28, 1078-1086.	7.8	203
30	Epigenetic memory transmission through mitosis and meiosis in plants. Seminars in Cell and Developmental Biology, 2008, 19, 527-536.	5.0	88
31	Control of Genic DNA Methylation by a jmjC Domain-Containing Protein in <i>Arabidopsis thaliana</i> . Science, 2008, 319, 462-465.	12.6	268
32	Negative regulation of DNA methylation in plants. Epigenetics, 2008, 3, 122-124.	2.7	21
33	Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO Journal, 2007, 26, 3641-3652.	7.8	205
34	Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant Journal, 2006, 49, 38-45.	5.7	219
35	Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genetics, 2003, 34, 65-69.	21.4	455
36	Erasure of CpG methylation in <i>Arabidopsis</i> alters patterns of histone H3 methylation in heterochromatin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8823-8827.	7.1	290

#	Article	IF	CITATIONS
37	Thioredoxin-Mediated Reductive Activation of a Protein Kinase for the Regulatory Phosphorylation of C4-form Phosphoenolpyruvate Carboxylase from Maize. Plant and Cell Physiology, 2001, 42, 1295-1302.	3.1	52
38	Crystallization and preliminary X-ray diffraction studies of C4-form phosphoenolpyruvate carboxylase from maize. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1937-1938.	2.5	5
39	Epigenetic regulation of ecotype-specific expression of the heat-activated transposon ONSEN. Frontiers in Plant Science, 0, 13, .	3.6	5