Yong-Hua Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6533576/publications.pdf

Version: 2024-02-01

257450 289244 107 2,228 24 40 citations g-index h-index papers 109 109 109 2806 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Excess copper promotes catabolic activity of gram-positive bacteria and resistance of gram-negative bacteria but inhibits fungal community in soil. Environmental Science and Pollution Research, 2022, 29, 22602-22612.	5.3	2
2	Shikonin N-benzyl matrinic acid ester derivatives as novel telomerase inhibitors with potent activity against lung cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2022, 57, 128503.	2.2	7
3	Overexpression of a putative 12-oxophytodienoate reductase gene, EpOPR1, enhances acetylshikonin production in Echium plantagineum. In Vitro Cellular and Developmental Biology - Plant, 2022, 58, 311-320.	2.1	3
4	Anti-microbial efficacy, mechanisms and druggability evaluation of the natural flavonoids. Journal of Applied Microbiology, 2022, 133, 1975-1988.	3.1	6
5	Cloning and functional analysis of EpGHQH1 in shikonin production of Echium plantagineum. Plant Cell, Tissue and Organ Culture, 2021, 144, 533-543.	2.3	6
6	Differential relieving effects of shikonin and its derivatives on inflammation and mucosal barrier damage caused by ulcerative colitis. PeerJ, 2021, 9, e10675.	2.0	13
7	One pot synthesis of aryl nitriles from aromatic aldehydes in a water environment. RSC Advances, 2021, 11, 24232-24237.	3.6	4
8	Differential microbial assemblages associated with shikonin-producing Borage species in two distinct soil types. Scientific Reports, 2021, 11, 10788.	3.3	8
9	Assessment of shikonin and acetyl-shikonin for mitigating quorum sensing potential of C. violaceum. Plant Growth Regulation, 2021, 94, 233-243.	3.4	1
10	Aux/IAA and ARF Gene Families in Salix suchowensis: Identification, Evolution, and Dynamic Transcriptome Profiling During the Plant Growth Process. Frontiers in Plant Science, 2021, 12, 666310.	3.6	12
11	Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorganic Chemistry, 2021, 111, 104872.	4.1	14
12	Deciphering the rhizobacterial assemblages under the influence of genetically engineered maize carrying mcry genes. Environmental Science and Pollution Research, 2021, 28, 60154-60166.	5.3	2
13	Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. Plant Journal, 2021, 108, 330-346.	5.7	10
14	SbNAC2 enhances abiotic stress tolerance by upregulating ROS scavenging activities and inducing stress-response genes in sorghum. Environmental and Experimental Botany, 2021, 192, 104664.	4.2	7
15	Differential Assembly and Shifts of the Rhizosphere Bacterial Community by a Dual Transgenic Glyphosate-Tolerant Soybean Line with and without Glyphosate Application. Horticulturae, 2021, 7, 374.	2.8	4
16	OUP accepted manuscript. Tree Physiology, 2021, , .	3.1	2
17	Progress on biosynthesis and function of the natural products of Zi Cao as a traditional Chinese medicinal herb. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2021, 43, 459-472.	0.2	2
18	Bacterial composition, function and the enrichment of plant growth promoting rhizobacteria (PGPR) in differential rhizosphere compartments of Al-tolerant soybean in acidic soil. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2021, 43, 487-500.	0.2	0

#	Article	IF	CITATIONS
19	Identification of Genes Underlying the Resistance to <i>Melampsora larici-populina</i> Gene Supercluster of the <i>Populus deltoides</i> Genome. Plant Disease, 2020, 104, 1133-1143.	1.4	6
20	Establishment of the hairy root culture of Echium plantagineum L. and its shikonin production. 3 Biotech, 2020, 10, 429.	2.2	11
21	Discovering Podophyllotoxin Derivatives as Potential Antiâ€Tubulin Agents: Design, Synthesis and Biological Evaluation. ChemistrySelect, 2020, 5, 10526-10536.	1.5	3
22	The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution. Horticulture Research, 2020, 7, 45.	6.3	35
23	Shikonin and 4-hydroxytamoxifen synergistically inhibit the proliferation of breast cancer cells through activating apoptosis signaling pathway in vitro and in vivo. Chinese Medicine, 2020, 15, 23.	4.0	20
24	SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 2020, 246-247, 153142.	3.5	54
25	Assembly and shifts of the bacterial rhizobiome of field grown transgenic maize line carrying mcry1Ab and mcry2Ab genes at different developmental stages. Plant Growth Regulation, 2020, 91, 113-126.	3.4	8
26	Changes of microbial functional capacities in the rhizosphere contribute to aluminum tolerance by genotype-specific soybeans in acid soils. Biology and Fertility of Soils, 2020, 56, 771-783.	4.3	13
27	Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil. Journal of Microbiology and Biotechnology, 2020, 30, 1169-1179.	2.1	5
28	Impact of a <i>G2-EPSPS</i> & <i>GAT</i> Dual Transgenic Glyphosate-Resistant Soybean Line on the Soil Microbial Community under Field Conditions Affected by Glyphosate Application. Microbes and Environments, 2020, 35, n/a.	1.6	8
29	Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Frontiers in Microbiology, 2019, 10, 1335.	3.5	18
30	A Defective Vacuolar Proton Pump Enhances Aluminum Tolerance by Reducing Vacuole Sequestration of Organic Acids. Plant Physiology, 2019, 181, 743-761.	4.8	22
31	Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR. Bioorganic and Medicinal Chemistry, 2019, 27, 115153.	3.0	16
32	Heterologous overexpression of Lithospermum erythrorhizon LeERF-1 gene increases drought and pathogen resistance in Arabidopsis. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	3
33	Trimming of N-Glycans by the Golgi-Localized α-1,2-Mannosidases, MNS1 and MNS2, Is Crucial for Maintaining RSW2 Protein Abundance during Salt Stress in Arabidopsis. Molecular Plant, 2018, 11, 678-690.	8.3	49
34	Design, synthesis and anti-cancer evaluation of novel podophyllotoxin derivatives as potent tubulin-targeting agents. Medicinal Chemistry Research, 2018, 27, 351-365.	2.4	5
35	Design and characterization of $\hat{l}\pm$ -lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. European Journal of Medicinal Chemistry, 2018, 144, 137-150.	5.5	32
36	Glyphosate application increased catabolic activity of gram-negative bacteria but impaired soil fungal community. Environmental Science and Pollution Research, 2018, 25, 14762-14772.	5.3	16

#	Article	IF	Citations
37	Involvement of Le <scp>MRP</scp> , an <scp>ATP</scp> â€binding cassette transporter, in shikonin transport and biosynthesis in <i>Lithospermum erythrorhizon</i> . Plant Biology, 2018, 20, 365-373.	3.8	10
38	The evaluation of potent antitumor activities of shikonin coumarin-carboxylic acid, PMMB232 through HIF-1α-mediated apoptosis. Biomedicine and Pharmacotherapy, 2018, 97, 656-666.	5. 6	21
39	Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chemical Biology and Drug Design, 2018, 91, 681-690.	3.2	88
40	Novel Podophyllotoxin Derivatives as Potential Tubulin Inhibitors: Design, Synthesis, and Antiproliferative Activity Evaluation. Chemistry and Biodiversity, 2018, 15, e1800289.	2.1	10
41	Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes, 2018, 9, 214.	2.4	9
42	Effects of an EPSPS-transgenic soybean line ZUTS31 on root-associated bacterial communities during field growth. PLoS ONE, 2018, 13, e0192008.	2.5	47
43	Design, synthesis, biological evaluation, and 3Dâ€ <scp>QSAR</scp> analysis of podophyllotoxinâ€"dioxazole combination as tubulin targeting anticancer agents. Chemical Biology and Drug Design, 2017, 90, 236-243.	3.2	15
44	Design, Synthesis, and Biological Evaluation of Chalconeâ€Containing Shikonin Derivatives as Inhibitors of Tubulin Polymerization. ChemMedChem, 2017, 12, 399-406.	3.2	23
45	Identification of New Shikonin Derivatives as Antitumor Agents Targeting STAT3 SH2 Domain. Scientific Reports, 2017, 7, 2863.	3.3	33
46	Identification of new shikonin derivatives as STAT3 inhibitors. Biochemical Pharmacology, 2017, 146, 74-86.	4.4	43
47	Synthesis, characterization and biological evaluation of formononetin derivatives as novel EGFR inhibitors <i>via</i> inhibiting growth, migration and inducing apoptosis in breast cancer cell line. RSC Advances, 2017, 7, 48404-48419.	3.6	12
48	Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4066-4074.	2.2	35
49	Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism. Biomedicine and Pharmacotherapy, 2017, 93, 636-645.	5. 6	21
50	Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales' evolutionary history. Scientific Reports, 2017, 7, 4477.	3.3	26
51	Novel mechanisms for organic acid-mediated aluminium tolerance in roots and leaves of two contrasting soybean genotypes. AoB PLANTS, 2017, 9, plx064.	2.3	20
52	Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0173681.	2.5	66
53	Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Current Genomics, 2017, 19, 36-49.	1.6	10
54	Involvement of LeMDR, an ATP-binding cassette protein gene, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. BMC Plant Biology, 2017, 17, 198.	3.6	12

#	Article	IF	CITATIONS
55	Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq. Journal of Microbiology and Biotechnology, 2017, 27, 561-572.	2.1	52
56	A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen. International Journal of Molecular Sciences, 2016, 17, 219.	4.1	44
57	Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC Plant Biology, 2016, 16, 121.	3 . 6	15
58	Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines by High-Throughput Sequencing and Degradome Analysis. PLoS ONE, 2016, 11, e0159810.	2.5	7
59	The LIKE SEX FOUR2 regulates root development by modulating reactive oxygen species homeostasis in Arabidopsis. Scientific Reports, 2016, 6, 28683.	3.3	17
60	Design, synthesis and anti-cancer activity evaluation of podophyllotoxin-norcantharidin hybrid drugs. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3237-3242.	2.2	24
61	Shikonin derivatives as inhibitors of tyrosyl-tRNA synthetase: design, synthesis and biological evaluation. RSC Advances, 2016, 6, 83003-83010.	3.6	5
62	Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. Plant Molecular Biology, 2016, 90, 345-358.	3.9	17
63	Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacological Research, 2016, 104, 86-96.	7.1	38
64	Identification of miRNAs and their targets in transgenic Brassica napus and its acceptor (Westar) by high-throughput sequencing and degradome analysis. RSC Advances, 2015, 5, 85383-85394.	3.6	11
65	Synthesis of novel aryl dithian valeryl podophyllotoxin ester derivatives as potential antitubulin agents. RSC Advances, 2015, 5, 47511-47521.	3.6	9
66	Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochemical Pharmacology, 2015, 96, 93-106.	4.4	23
67	Targeted photosensitizer nanoconjugates based on human serum albumin selectively kill tumor cells upon photo-irradiation. RSC Advances, 2015, 5, 50572-50579.	3.6	9
68	A Potent Anticancer Agent of Shikonin Derivative Targeting Tubulin. Chirality, 2015, 27, 274-280.	2.6	8
69	A newly isolated Haloalkaliphilic bacterium from middle–late Eocene halite formed in salt lakes in China. Carbonates and Evaporites, 2015, 30, 321-330.	1.0	8
70	Design, synthesis and mechanism of novel shikonin derivatives as potent anticancer agents. RSC Advances, 2015, 5, 31759-31767.	3.6	14
71	Semi-synthesis and anti-lung cancer activity evaluation of aryl dihydrothiazol acyl podophyllotoxin ester derivatives. RSC Advances, 2015, 5, 27775-27784.	3.6	12
72	Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F ₂ plants. New Phytologist, 2015, 206, 1491-1502.	7.3	86

#	Article	IF	Citations
73	Synthesis, biological evaluation and molecular modeling of 1H-benzo[d]imidazole derivatives as novel anti-tubulin polymerization agents. RSC Advances, 2015, 5, 74425-74437.	3.6	5
74	Design and synthesis of 2-styryl of 5-Nitroimidazole derivatives and antimicrobial activities as FabH inhibitors. European Journal of Medicinal Chemistry, 2014, 76, 387-396.	5.5	16
75	Synthesis and Biological Evaluation of Heterocyclic Carboxylic Acyl Shikonin Derivatives. Chemical Biology and Drug Design, 2014, 83, 334-343.	3.2	18
76	Design, synthesis, evaluation and 3D-QSAR analysis of benzosulfonamide benzenesulfonates as potent and selective inhibitors of MMP-2. RSC Advances, 2014, 4, 39214.	3.6	13
77	<i>Arabidopsis</i> Transporter MGT6 Mediates Magnesium Uptake and Is Required for Growth under Magnesium Limitation. Plant Cell, 2014, 26, 2234-2248.	6.6	108
78	Design, synthesis and biological evaluation of shikonin thio-glycoside derivatives: new anti-tubulin agents. RSC Advances, 2014, 4, 49796-49805.	3.6	21
79	Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Advances, 2014, 4, 35588.	3.6	19
80	Novel Shikonin Derivatives Targeting Tubulin as Anticancer Agents. Chemical Biology and Drug Design, 2014, 84, 603-615.	3.2	27
81	Modification, Biological Evaluation and 3D QSAR Studies of Novel 2-(1,3-Diaryl-) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 T	rf 5 <u>0</u> 422 Td
82	Faecalibacterium prausnitzii Inhibits Interleukin-17 to Ameliorate Colorectal Colitis in Rats. PLoS ONE, 2014, 9, e109146.	2.5	83
83	Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation. Journal of Plant Research, 2013, 126, 823-832.	2.4	4
84	Design and Synthesis of Fluoroacylshikonin as an Anticancer Agent. Chirality, 2013, 25, 757-762.	2.6	14
85	Design, Synthesis and Biological Evaluation of Cinnamic Acyl Shikonin Derivatives. Chemical Biology and Drug Design, 2013, 81, 275-283.	3.2	28
86	Preparation, cellular uptake and angiogenic suppression of shikonin-containing liposomes inÂvitro and inÂvivo. Bioscience Reports, 2013, 33, e00020.	2.4	23
87	Synthesis, docking and biological evaluation of isoquinolonic acid derivatives. Chemical Research in Chinese Universities, 2013, 29, 1110-1114.	2.6	1
88	Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil. Biology and Fertility of Soils, 2012, 48, 97-108.	4.3	71
89	Development and validation of a competitive indirect enzyme-linked immunosorbent assay for the determination of mercury in aqueous solution. Analytical Methods, 2011, 3, 1859.	2.7	13
90	Cloning, characterization, and expression of LeEIL-1, an Arabidopsis EIN3 homolog, in Lithospermum erythrorhizon. Plant Cell, Tissue and Organ Culture, 2011, 106, 71-79.	2.3	8

#	Article	IF	Citations
91	Sequence analysis and expression of the calmodulin gene, MCaM-3, in mulberry (Morus L.). Genes and Genomics, 2011, 33, 97-103.	1.4	5
92	Expression analysis of shikonin-biosynthetic genes in response to M9 medium and light in Lithospermum erythrorhizon cell cultures. Plant Cell, Tissue and Organ Culture, 2010, 101, 135-142.	2.3	25
93	Differential Responses of Anti-Oxidative Enzymes to Aluminum Stress in Tolerant and Sensitive Soybean Genotypes. Journal of Plant Nutrition, 2009, 32, 1255-1270.	1.9	15
94	Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biology and Biochemistry, 2008, 40, 778-788.	8.8	89
95	Expression analysis of light-regulated genes isolated from a full-length-enriched cDNA library of Onosma paniculatum cell cultures. Journal of Plant Physiology, 2008, 165, 1474-1482.	3.5	16
96	Effect of Light on Gene Expression and Shikonin Formation in Cultured Onosma Paniculatum Cells. Plant Cell, Tissue and Organ Culture, 2006, 84, 38-48.	2.3	36
97	Effects of Citric Acid on Soybean Seedling Growth Under Aluminum Stress. Journal of Plant Nutrition, 2004, 27, 367-375.	1.9	8
98	RAPD Marker and Substrate Utilization Pattern Applied to Study Microbial Community Diversity in the Soil Affected by Agricultural Chemicals. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 125-138.	1.5	6
99	Effects of Methyl jasmonate with indole-3-acetic acid and 6-benzylaminopurine on the secondary metabolism of cultured Onosma paniculatum cells. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 581-585.	2.1	14
100	Effects of Boron on Aluminum Toxicity on Seedlings of Two Soybean Cultivars. Water, Air, and Soil Pollution, 2004, 154, 239-248.	2.4	13
101	Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae). Plant Cell, Tissue and Organ Culture, 2003, 73, 87-89.	2.3	35
102	Title is missing!. Plant Growth Regulation, 2003, 39, 253-261.	3.4	12
103	PHYSIOLOGICAL EFFECTS OF ALUMINUM/CALCIUM RATIOS ON ALUMINUM TOXICITY OF MUNGBEAN SEEDLING GROWTH. Journal of Plant Nutrition, 2001, 24, 585-597.	1.9	7
104	ALLEVIATION EFFECT OF DIFFERENT RATIOS OF AI TO Ca ON AI TOXICITY FOR MORPHOLOGICAL GROWTH OF MUNGBEAN SEEDLING. Journal of Plant Nutrition, 2001, 24, 573-583.	1.9	5
105	Effects of Agricultural Chemicals on DNA Sequence Diversity of Soil Microbial Community: A Study with RAPD Marker. Microbial Ecology, 2000, 39, 72-79.	2.8	87
106	Effect of Brassinolide on Growth and Shikonin Formation in Cultured Onosma paniculatum Cells. Journal of Plant Growth Regulation, 1999, 18, 89-92.	5.1	34
107	Fusion expression of human proâ€urokinase with E. coli thioredoxin. IUBMB Life, 1998, 46, 479-486.	3.4	4