Tony D Southall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6532752/publications.pdf

Version: 2024-02-01

414414 394421 1,837 32 19 citations h-index papers

32 g-index 55 55 55 1932 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Decoding gene regulation in the fly brain. Nature, 2022, 601, 630-636.	27.8	102
2	An auxin-inducible, GAL4-compatible, gene expression system for Drosophila. ELife, 2022, 11, .	6.0	17
3	Escargot controls somatic stem cell maintenance through the attenuation of the insulin receptor pathway in Drosophila. Cell Reports, 2022, 39, 110679.	6.4	6
4	Dynamic adult tracheal plasticity drives stem cell adaptation to changes in intestinal homeostasis in Drosophila. Nature Cell Biology, 2021, 23, 485-496.	10.3	20
5	Gene expression profiling of epidermal cell types in <i>C. elegans</i> using Targeted DamID. Development (Cambridge), 2021, 148, .	2.5	11
6	FlyORF-TaDa allows rapid generation of new lines for <i>in vivo</i> cell-type-specific profiling of protein–DNA interactions in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7
7	Dynamic neurotransmitter specific transcription factor expression profiles during <i>Drosophila</i> development. Biology Open, 2020, 9, .	1.2	14
8	Condensin I subunit Cap-G is essential for proper gene expression during the maturation of post-mitotic neurons. ELife, 2020, 9, .	6.0	13
9	Maintenance of Cell Fate by the Polycomb Group Gene Sex Combs Extra Enables a Partial Epithelial Mesenchymal Transition in Drosophila. G3: Genes, Genomes, Genetics, 2020, 10, 4459-4471.	1.8	O
10	Ets21c Governs Tissue Renewal, Stress Tolerance, and Aging in the Drosophila Intestine. Cell Reports, 2019, 27, 3019-3033.e5.	6.4	49
11	DamID as a versatile tool for understanding gene regulation. Development (Cambridge), 2019, 146, .	2.5	38
12	<i>fs(1)h</i> controls metabolic and immune function and enhances survival via AKT and FOXO in <i>Drosophila</i> DMM Disease Models and Mechanisms, 2019, 12, .	2.4	14
13	Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci. ELife, 2019, 8, .	6.0	46
14	Targeted DamID reveals differential binding of mammalian pluripotency factors. Development (Cambridge), 2018, 145, .	2.5	43
15	CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo. ELife, 2018, 7, .	6.0	67
16	Comprehensive Characterization of the Complex Iola Locus Reveals a Novel Role in the Octopaminergic Pathway via Tyramine Beta-Hydroxylase Regulation. Cell Reports, 2017, 21, 2911-2925.	6.4	13
17	Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in <i>Drosophila</i> . Genetics, 2016, 202, 191-219.	2.9	18
18	Dam it's good! DamID profiling of protein-DNA interactions. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 25-37.	5.9	48

#	Article	IF	CITATION
19	Getting Down to Specifics. Advances in Genetics, 2015, 91, 103-151.	1.8	12
20	<i>Escargot</i> maintains stemness and suppresses differentiation in <i>Drosophila</i> intestinal stem cells. EMBO Journal, 2014, 33, 2967-2982.	7.8	113
21	Regulation of <i>Drosophila</i> intestinal stem cell maintenance and differentiation by the transcription factor Escargot. EMBO Journal, 2014, 33, 2983-2996.	7.8	74
22	The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression. Journal of Neuroscience, 2014, 34, 2538-2543.	3.6	24
23	Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System. Current Biology, 2014, 24, 229-241.	3.9	95
24	Dedifferentiation of Neurons Precedes Tumor Formation in Iola Mutants. Developmental Cell, 2014, 28, 685-696.	7.0	73
25	Cell-Type-Specific Profiling of Gene Expression and Chromatin Binding without Cell Isolation: Assaying RNA Pol II Occupancy in Neural Stem Cells. Developmental Cell, 2013, 26, 101-112.	7.0	221
26	The LIM-Homeodomain Protein Islet Dictates Motor Neuron Electrical Properties by Regulating K+Channel Expression. Neuron, 2012, 75, 663-674.	8.1	38
27	Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO Journal, 2009, 28, 3799-3807.	7.8	102
28	Generation of Driver and Reporter Constructs for the GAL4 Expression System in <i>Drosophila</i> Figure 1 Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5029.	0.3	5
29	The GAL4 System: A Versatile Toolkit for Gene Expression in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.top49.	0.3	22
30	Chromatin profiling in model organisms. Briefings in Functional Genomics & Proteomics, 2007, 6, 133-140.	3.8	17
31	Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nature Protocols, 2007, 2, 1467-1478.	12.0	341
32	The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons. Neural Development, 2006, 1, 3.	2.4	35