James M Tepper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531795/publications.pdf

Version: 2024-02-01

50276 56724 7,931 90 46 83 citations h-index g-index papers 91 91 91 5552 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Neuropilin 2/Plexin-A3 Receptors Regulate the Functional Connectivity and the Excitability in the Layers 4 and 5 of the Cerebral Cortex. Journal of Neuroscience, 2022, , JN-RM-1965-21.	3.6	O
2	Neuropilin 2 Signaling Mediates Corticostriatal Transmission, Spine Maintenance, and Goal-Directed Learning in Mice. Journal of Neuroscience, 2019, 39, 8845-8859.	3.6	24
3	Cortical and thalamic inputs exert cell typeâ€specific feedforward inhibition on striatal GABAergic interneurons. Journal of Neuroscience Research, 2019, 97, 1491-1502.	2.9	10
4	Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons. Journal of Neuroscience, 2019, 39, 4727-4737.	3.6	39
5	Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior. Current Biology, 2019, 29, 1313-1323.e5.	3.9	18
6	Loss of striatal tyrosineâ€hydroxylase interneurons impairs instrumental goalâ€directed behavior. European Journal of Neuroscience, 2019, 50, 2653-2662.	2.6	10
7	Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. European Journal of Neuroscience, 2019, 49, 593-603.	2.6	67
8	Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018. Frontiers in Neuroanatomy, 2018, 12, 91.	1.7	145
9	Identification and Characterization of a Novel Spontaneously Active Bursty GABAergic Interneuron in the Mouse Striatum. Journal of Neuroscience, 2018, 38, 5688-5699.	3 . 6	24
10	Differential processing of thalamic information via distinct striatal interneuron circuits. Nature Communications, 2017, 8, 15860.	12.8	72
11	Neostriatal GABAergic Interneurons Mediate Cholinergic Inhibition of Spiny Projection Neurons. Journal of Neuroscience, 2016, 36, 9505-9511.	3.6	65
12	Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nature Neuroscience, 2016, 19, 1025-1033.	14.8	122
13	Novel fast adapting interneurons mediate cholinergicâ€induced fast <scp>GABA_A</scp> inhibitory postsynaptic currents in striatal spiny neurons. European Journal of Neuroscience, 2015, 42, 1764-1774.	2.6	57
14	Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons. Neuropharmacology, 2015, 95, 468-476.	4.1	30
15	Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?. Journal of Neuroscience, 2015, 35, 6584-6599.	3.6	85
16	Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway. Brain Structure and Function, 2015, 220, 331-349.	2.3	29
17	GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nature Neuroscience, 2012, 15, 123-130.	14.8	258
18	Introduction to Basal Ganglia X – Proceedings of the 10th Triennial Meeting of the International Basal Ganglia Society. Frontiers in Systems Neuroscience, 2012, 6, 29.	2.5	1

#	Article	IF	CITATIONS
19	Distribution of Tyrosine Hydroxylase-Expressing Interneurons with Respect to Anatomical Organization of the Neostriatum. Frontiers in Systems Neuroscience, 2011, 5, 41.	2.5	24
20	Glutamatergic signaling by midbrain dopaminergic neurons: recent insights from optogenetic, molecular and behavioral studies. Current Opinion in Neurobiology, 2011, 21, 393-401.	4.2	22
21	A Novel Functionally Distinct Subtype of Striatal Neuropeptide Y Interneuron. Journal of Neuroscience, 2011, 31, 16757-16769.	3.6	124
22	Neurophysiology of Substantia Nigra Dopamine Neurons. Handbook of Behavioral Neuroscience, 2010, , 275-296.	0.7	1
23	Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens. Journal of Neuroscience, 2010, 30, 7105-7110.	3.6	280
24	GABAergic Interneurons of the Striatum. Handbook of Behavioral Neuroscience, 2010, , 151-166.	0.7	7
25	Heterogeneity and Diversity of Striatal GABAergic Interneurons. Frontiers in Neuroanatomy, 2010, 4, 150.	1.7	351
26	Electrophysiological and Morphological Characteristics and Synaptic Connectivity of Tyrosine Hydroxylase-Expressing Neurons in Adult Mouse Striatum. Journal of Neuroscience, 2010, 30, 6999-7016.	3.6	120
27	Differential Dopaminergic Modulation of Neostriatal Synaptic Connections of Striatopallidal Axon Collaterals. Journal of Neuroscience, 2009, 29, 8977-8990.	3 . 6	73
28	Basal Ganglia Control of Substantia Nigra Dopaminergic Neurons. , 2009, , 71-90.		30
29	Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Research Reviews, 2008, 58, 272-281.	9.0	181
30	GABAergic Afferents Activate Both GABA _A and GABA _B Receptors in Mouse Substantia Nigra Dopaminergic Neurons <i>In Vivo</i> . Journal of Neuroscience, 2008, 28, 10386-10398.	3.6	67
31	A Calcium-Activated Nonselective Cation Conductance Underlies the Plateau Potential in Rat Substantia Nigra GABAergic Neurons. Journal of Neuroscience, 2007, 27, 6531-6541.	3.6	53
32	Basal ganglia macrocircuits. Progress in Brain Research, 2007, 160, 3-7.	1.4	159
33	GABAergic control of substantia nigra dopaminergic neurons. Progress in Brain Research, 2007, 160, 189-208.	1.4	191
34	Morphological and physiological properties of parvalbumin- and calretinin-containing $\hat{1}^3$ -aminobutyric acidergic neurons in the substantia nigra. Journal of Comparative Neurology, 2007, 500, 958-972.	1.6	54
35	Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons. Brain Structure and Function, 2007, 212, 55-73.	2.3	42
36	Endogenous Hydrogen Peroxide Regulates the Excitability of Midbrain Dopamine Neurons via ATP-Sensitive Potassium Channels. Journal of Neuroscience, 2005, 25, 4222-4231.	3.6	143

#	Article	lF	CITATIONS
37	Feedforward and Feedback Inhibition in the Neostriatum. , 2005, , 457-466.		O
38	Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum. Journal of Neuroscience, 2004, 24, 7916-7922.	3.6	250
39	Functional diversity and specificity of neostriatal interneurons. Current Opinion in Neurobiology, 2004, 14, 685-692.	4.2	439
40	GABAergic microcircuits in the neostriatum. Trends in Neurosciences, 2004, 27, 662-669.	8.6	384
41	Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels. Neuroscience, 2004, 129, 481-489.	2.3	40
42	Cell Type-Specific Differences in Chloride-Regulatory Mechanisms and GABA _A Receptor-Mediated Inhibition in Rat Substantia Nigra. Journal of Neuroscience, 2003, 23, 8237-8246.	3.6	114
43	Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum. Journal of Neuroscience, 2002, 22, 529-535.	3.6	277
44	Afferent Control of Nigral Dopaminergic Neurons. Advances in Behavioral Biology, 2002, , 641-651.	0.2	1
45	Subthalamic Stimulation-Induced Synaptic Responses in Substantia Nigra Pars Compacta Dopaminergic Neurons In Vitro. Journal of Neurophysiology, 1999, 82, 925-933.	1.8	106
46	Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 1999, 2, 467-472.	14.8	765
47	GABAA receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Research, 1999, 832, 145-151.	2.2	62
48	GABAA and GABAB antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo., 1999, 32, 165-176.		132
49	Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience, 1999, 89, 799-812.	2.3	126
50	Gabaergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata. Neuroscience, 1999, 89, 813-825.	2.3	119
51	Morphological and electrophysiological characteristics of noncholinergic basal forebrain neurons. , 1998, 394, 186-204.		37
52	Postnatal development of excitatory synaptic input to the rat neostriatum: An electron microscopic study. Neuroscience, 1998, 84, 1163-1175.	2.3	63
53	Do silent dopaminergic neurons exist in rat substantia nigra in vivo?. Neuroscience, 1998, 85, 1089-1099.	2.3	37
54	Postnatal Development of the Rat Neostriatum: Electrophysiological, Light- and Electron-Microscopic Studies. Developmental Neuroscience, 1998, 20, 125-145.	2.0	163

#	Article	IF	CITATIONS
55	Functional Roles of Dopamine D ₂ and D ₃ Autoreceptors on Nigrostriatal Neurons Analyzed by Antisense Knockdown <i>In Vivo</i> . Journal of Neuroscience, 1997, 17, 2519-2530.	3.6	123
56	Local infusion of brain-derived neurotrophic factor modifies the firing pattern of dorsal raph \tilde{A} © serotonergic neurons. Brain Research, 1996, 712, 293-298.	2.2	73
57	Electrophysiological Consequences of D2 and/or D3 Receptor Knockout by Antisense Oligonucleotides in Nigrostriatal Dopaminergic Neurons. Advances in Behavioral Biology, 1996, , 141-149.	0.2	0
58	GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. Journal of Neuroscience, 1995, 15, 3092-3103.	3.6	324
59	Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: In vivo electrophysiology. Neuroscience, 1994, 63, 711-724.	2.3	40
60	Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Neuroscience, 1994, 60, 469-477.	2.3	68
61	Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: Light and electron microscopy. Neuroscience, 1994, 63, 725-745.	2.3	38
62	Chapter 3 In vivo studies of the postnatal development of rat neostriatal neurons. Progress in Brain Research, 1993, 99, 35-50.	1.4	60
63	Analysis of dynamin isoforms in mammalian brain: dynamin-1 expression is spatially and temporally regulated during postnatal development Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8376-8380.	7.1	43
64	The shell region of the nucleus ovoidalis: A subdivision of the avian auditory thalamus. Journal of Comparative Neurology, 1992, 323, 495-518.	1.6	120
65	Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus. Experimental Brain Research, 1992, 90, 519-25.	1.5	116
66	Electrophysiological characteristics of cells within mesencephalon suspension grafts. Neuroscience, 1991, 40, 109-122.	2.3	104
67	Amphetamine exerts anomalous effects on dopaminergic neurons in neonatal rats in vivo. European Journal of Pharmacology, 1991, 204, 265-272.	3.5	18
68	Stimulus-evoked changes in neostriatal dopamine levels in awake and anesthetized rats as measured by microdialysis. Brain Research, 1991, 559, 283-292.	2.2	38
69	Dorsal raph� stimulation modifies striatal-evoked antidromic invasion of nigral dopaminergic neurons in vivo. Experimental Brain Research, 1991, 84, 620-30.	1.5	58
70	In Vivo Electrophysiology of Central Nervous System Terminal Autoreceptors. Annals of the New York Academy of Sciences, 1990, 604, 470-487.	3.8	7
71	Postnatal development of the electrical activity of rat nigrostriatal dopaminergic neurons. Developmental Brain Research, 1990, 54, 21-33.	1.7	75
72	Mesocortical dopaminergic neurons. 2. Electrophysiological consequences of terminal autoreceptor activation. Brain Research Bulletin, 1989, 22, 517-523.	3.0	18

#	Article	IF	CITATIONS
73	Mesocortical dopaminergic neurons. 1. Electrophysiological properties and evidence for soma-dendritic autoreceptors. Brain Research Bulletin, 1989, 22, 511-516.	3.0	35
74	Frontal cortex stimulation evoked neostriatal potentials in rats: Intracellular and extracellular analysis. Brain Research Bulletin, 1986, 17, 751-758.	3.0	16
75	Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of potassium channel blockers. Brain Research, 1986, 367, 230-237.	2.2	12
76	Autoreceptor activation in central monoamine neurons: Modulation of neurotransmitter release is not mediated by intermittent axonal conduction. Neuroscience, 1985, 15, 925-931.	2.3	18
77	Antidromic activation of dorsal raphe neurons from neostriatum: Physiological characterization and effects of terminal autoreceptor activation. Brain Research, 1985, 332, 15-28.	2.2	56
78	Amphetamine's effects on terminal excitability of noradrenergic locus coeruleus neurons are impulse-dependent at low but not high doses. Brain Research, 1985, 341, 155-163.	2.2	19
79	The neuropharmacology of the autoinhibition of monoamine release. Trends in Pharmacological Sciences, 1985, 6, 251-256.	8.7	28
80	Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of increases in impulse flow. Brain Research, 1984, 309, 299-307.	2.2	41
81	Autoreceptor-mediated changes in dopaminergic terminal excitability: Effects of striatal drug infusions. Brain Research, 1984, 309, 309-316.	2.2	62
82	Changes in noradrenergic terminal excitability induced by amphetamine and their relation to impulse traffic. Neuroscience, 1982, 7, 2217-2224.	2.3	23
83	Noradrenergic terminal excitability: Effects of opioids. Neuroscience Letters, 1982, 30, 57-62.	2.1	43
84	Changes in dopaminergic terminal excitability induced by amphetamine and haloperidol. Brain Research, 1981, 221, 425-431.	2.2	49
85	Neurophysiological consequences of presynaptic receptor activation: changes in noradrenergic terminal excitability. Brain Research, 1981, 226, 155-170.	2.2	60
86	Acoustic priming and kanamycin-induced cochlear damage. Brain Research, 1980, 187, 81-95.	2.2	19
87	Seizure proneness and neurotransmitter uptake. Neurochemical Research, 1979, 4, 755-761.	3.3	6
88	Relations between nicotine-induced convulsive behavior and blood and brain levels of nicotine as a function of sex and age in two inbred strains of mice. Pharmacology Biochemistry and Behavior, 1979, 10, 349-353.	2.9	20
89	Selective breeding for acoustic priming. Behavior Genetics, 1976, 6, 375-383.	2.1	7
90	Opposing Influence of Sensory and Motor Cortex on Striatal Circuitry and Choice Behavior. SSRN Electronic Journal, 0, , .	0.4	0