Jeroen den Hertog

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6531515/publications.pdf

Version: 2024-02-01

567281 454955 40 990 15 30 g-index citations h-index papers 47 47 47 1469 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The seventh international <scp>RASopathies</scp> symposium: Pathways to a cure—expanding knowledge, enhancing research, and therapeutic discovery. American Journal of Medical Genetics, Part A, 2022, 188, 1915-1927.	1.2	10
2	Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects. ELife, 2022, 11 , .	6.0	9
3	Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism. Molecular and Cellular Proteomics, 2021, 20, 100033.	3.8	8
4	Phosphatidylinositol-3 kinase signaling controls survival and stemness of hematopoietic stem and progenitor cells. Oncogene, 2021, 40, 2741-2755.	5.9	3
5	Berkchaetoazaphilone B has antimicrobial activity and affects energy metabolism. Scientific Reports, 2021, 11, 18774.	3.3	3
6	Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein–Protein Interactions. Journal of Medicinal Chemistry, 2021, 64, 15973-15990.	6.4	17
7	Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	7
8	A new perspective on fungal metabolites: identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out. Scientific Reports, 2019, 9, 17546.	3.3	26
9	Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight <i>in vivo</i> . FASEB Journal, 2019, 33, 5101-5111.	0.5	3
10	Shp2–Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration. Molecular and Cellular Biology, 2018, 38, .	2.3	7
11	Differential oxidation of protein-tyrosine phosphatases during zebrafish caudal fin regeneration. Scientific Reports, 2017, 7, 8460.	3.3	10
12	Hubrecht Institute Centennial – From embryos to stem cells. Developmental Biology, 2017, 428, 261-263.	2.0	3
13	Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Developmental Biology, 2017, 428, 283-292.	2.0	52
14	Impaired caudal finâ€fold regeneration in zebrafish deficient for the tumor suppressor Pten. Regeneration (Oxford, England), 2017, 4, 217-226.	6.3	9
15	A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development. ELife, 2017, 6, .	6.0	37
16	Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development. PLoS ONE, 2016, 11, e0148508.	2.5	16
17	Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond. Advances in Experimental Medicine and Biology, 2016, 916, 87-101.	1.6	7
18	Studying Protein-Tyrosine Phosphatases in Zebrafish. Methods in Molecular Biology, 2016, 1447, 351-372.	0.9	4

#	Article	IF	CITATIONS
19	Fine-Tuning of Pten Localization and Phosphatase Activity Is Essential for Zebrafish Angiogenesis. PLoS ONE, 2016, 11, e0154771.	2.5	7
20	Pten function in zebrafish: Anything but a fish story. Methods, 2015, 77-78, 191-196.	3.8	6
21	Distinct and Overlapping Functions of ptpn11 Genes in Zebrafish Development. PLoS ONE, 2014, 9, e94884.	2.5	22
22	Phosphoproteomics-Mediated Identification of Fer Kinase as a Target of Mutant Shp2 in Noonan and LEOPARD Syndrome. PLoS ONE, 2014, 9, e106682.	2.5	9
23	Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development (Cambridge), 2014, 141, 1961-1970.	2.5	47
24	Protein tyrosine phosphatases $\hat{l}\mu$ and $\hat{l}\pm$ perform nonredundant roles in osteoclasts. Molecular Biology of the Cell, 2014, 25, 1808-1818.	2.1	15
25	PZR Coordinates Shp2 Noonan and LEOPARD Syndrome Signaling in Zebrafish and Mice. Molecular and Cellular Biology, 2014, 34, 2874-2889.	2.3	32
26	A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates. Analytical Biochemistry, 2014, 448, 9-13.	2.4	9
27	Zebrafish as a model to study PTPs during development. Methods, 2014, 65, 247-253.	3.8	5
28	Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish. Blood, 2014, 123, 184-190.	1.4	38
29	Protein tyrosine phosphatases in health and disease. FEBS Journal, 2013, 280, 708-730.	4.7	139
30	Loss of Pten promotes angiogenesis and enhanced vegfaa expression in zebrafish. DMM Disease Models and Mechanisms, 2013, 6, 1159-66.	2.4	38
31	Realâ€Time Monitoring of the Dephosphorylating Activity of Protein Tyrosine Phosphatases Using Microarrays with 3â€Nitrophosphotyrosine Substrates. ChemPlusChem, 2013, 78, 1349-1357.	2.8	6
32	Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. DMM Disease Models and Mechanisms, 2012, 5, 241-247.	2.4	40
33	Pair-Wise Regulation of Convergence and Extension Cell Movements by Four Phosphatases via RhoA. PLoS ONE, 2012, 7, e35913.	2.5	11
34	Noonan syndrome gain-of-function mutations in <i>NRAS</i> cause zebrafish gastrulation defects. DMM Disease Models and Mechanisms, 2011, 4, 393-399.	2.4	57
35	Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish. PLoS ONE, 2010, 5, e12573.	2.5	20
36	Shp2 Knockdown and Noonan/LEOPARD Mutant Shp2–Induced Gastrulation Defects. PLoS Genetics, 2007, 3, e225.	3.5	88

#	Article	IF	CITATIONS
37	Fyn/Yes and non anonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements. EMBO Reports, 2005, 6, 426-431.	4.5	72
38	Chemical Genetics: Drug Screens in Zebrafish. Bioscience Reports, 2005, 25, 289-297.	2.4	85
39	Evolution-Informed Discovery of the Naphthalenone Biosynthetic Pathway in Fungi. MBio, 0, , .	4.1	5
40	Gregatins, a Group of Related Fungal Secondary Metabolites, Inhibit Aspects of Quorum Sensing in Gram-Negative Bacteria. Frontiers in Microbiology, $0,13,.$	3.5	4