
James M Hood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/653104/publications.pdf Version: 2024-02-01

IMMES M HOOD

#	Article	IF	CITATIONS
1	Temporal scope influences ecosystem driver-response relationships: A case study of Lake Erie with implications for ecosystem-based management. Science of the Total Environment, 2022, 813, 152473.	8.0	6
2	Nutrient enrichment intensifies the effects of warming on metabolic balance of stream ecosystems. Limnology and Oceanography Letters, 2022, 7, 332-341.	3.9	8
3	River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms. Water Research, 2022, 222, 118845.	11.3	12
4	Flow is more Important than Temperature in Driving Patterns of Organic Matter Storage and Stoichiometry in Stream Ecosystems. Ecosystems, 2021, 24, 1317-1331.	3.4	4
5	Longitudinal patterns and linkages in benthic fine particulate organic matter composition, respiration, and nutrient uptake. Limnology and Oceanography, 2021, 66, 2684-2696.	3.1	1
6	Decomposing decomposition: isolating direct effects of temperature from other drivers of detrital processing. Ecology, 2021, 102, e03467.	3.2	5
7	Functional traits reveal the dominant drivers of longâ€ŧerm community change across a North American Great Lake. Global Change Biology, 2021, 27, 6232-6251.	9.5	6
8	Evidence that copepod biomass during the larval period regulates recruitment of Lake Erie walleye. Journal of Great Lakes Research, 2021, 47, 1737-1745.	1.9	3
9	Of olives and carp: interactive effects of an aquatic and a terrestrial invader on a streamâ€riparian ecosystem. Ecosphere, 2021, 12, e03789.	2.2	4
10	Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web. Ecology, 2020, 101, e02952.	3.2	7
11	<scp>R</scp> esource supply governs the apparent temperature dependence of animal production in stream ecosystems. Ecology Letters, 2020, 23, 1809-1819.	6.4	12
12	Contrasting responses of black fly species (Diptera: Simuliidae) to experimental wholeâ€stream warming. Freshwater Biology, 2020, 65, 1793-1805.	2.4	3
13	Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Global Change Biology, 2018, 24, 1069-1084.	9.5	38
14	Shifts in community size structure drive temperature invariance of secondary production in a streamâ€ w arming experiment. Ecology, 2017, 98, 1797-1806.	3.2	23
15	Experimental wholeâ€stream warming alters community size structure. Global Change Biology, 2017, 23, 2618-2628.	9.5	37
16	Warming alters coupled carbon and nutrient cycles in experimental streams. Global Change Biology, 2016, 22, 2152-2164.	9.5	43
17	Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nature Geoscience, 2016, 9, 758-761.	12.9	67
18	Couples that have chemistry: when ecological theories meet. Oikos, 2015, 124, 917-919.	2.7	3

James M Hood

#	Article	IF	CITATIONS
19	Does N ₂ fixation amplify the temperature dependence of ecosystem metabolism?. Ecology, 2015, 96, 603-610.	3.2	53
20	Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 2015, 21, 1025-1040.	9.5	210
21	Selective feeding determines patterns of nutrient release by stream invertebrates. Freshwater Science, 2014, 33, 1093-1107.	1.8	33
22	Coupling of dietary phosphorus and growth across diverse fish taxa: a metaâ€analysis of experimental aquaculture studies. Ecology, 2014, 95, 2768-2777.	3.2	48
23	Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Global Change Biology, 2014, 20, 3291-3299.	9.5	92
24	Carbon and phosphorus linkages in <i><scp>D</scp>aphnia</i> growth are determined by growth rate, not species or diet. Functional Ecology, 2014, 28, 1156-1165.	3.6	29
25	Impacts of Warming on the Structure and Functioning of Aquatic Communities. Advances in Ecological Research, 2012, 47, 81-176.	2.7	106
26	The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams. Freshwater Biology, 2011, 56, 424-436.	2.4	63
27	Light-mediated thresholds in stream-water nutrient composition in a river network. Ecology, 2011, 92, 140-150.	3.2	84
28	To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 2010, 119, 741-751.	2.7	363
29	Diet Mixing: Do Animals Integrate Growth or Resources across Temporal Heterogeneity?. American Naturalist, 2010, 176, 651-663.	2.1	55
30	To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 2010, 119, 741.	2.7	2
31	FISH DISTRIBUTIONS AND NUTRIENT CYCLING IN STREAMS: CAN FISH CREATE BIOGEOCHEMICAL HOTSPOTS. Ecology, 2008, 89, 2335-2346.	3.2	249
32	Scaleâ€dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography, 2008, 53, 1169-1180.	3.1	238
33	Near-infrared spectrometry (NIRS) for the analysis of seston carbon, nitrogen, and phosphorus from diverse sources. Limnology and Oceanography: Methods, 2006, 4, 96-104.	2.0	11
34	Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia, 2005, 146, 247-257.	2.0	91
35	INTERACTIONS BETWEEN HERBIVOROUS FISHES AND LIMITING NUTRIENTS IN A TROPICAL STREAM ECOSYSTEM. Ecology, 2002, 83, 1831-1844.	3.2	124
36	Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters, 2002, 5, 285-293.	6.4	291