List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6530616/publications.pdf Version: 2024-02-01

PINC NIE

#	Article	IF	CITATIONS
1	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	10.3	632
2	Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chemistry, 2015, 17, 1668-1674.	9.0	572
3	Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO ₂ –Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors. ACS Nano, 2017, 11, 2952-2960.	14.6	542
4	Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today, 2017, 20, 191-209.	14.2	402
5	High performance lithium–sulfur batteries: advances and challenges. Journal of Materials Chemistry A, 2014, 2, 12662-12676.	10.3	269
6	Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. Journal of Materials Chemistry A, 2013, 1, 4490.	10.3	266
7	Prussian blue analogues: a new class of anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5852-5857.	10.3	241
8	2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334, 932-938.	12.7	230
9	Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a Highâ€Performance Cathode for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2013, 19, 1013-1019.	3.3	212
10	Pseudocapacitive behaviours of Na ₂ Ti ₃ O ₇ @CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 2015, 3, 21277-21283.	10.3	187
11	Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 1096-1101.	10.3	180
12	Porous Nitrogenâ€Ðoped Carbon Nanotubes Derived from Tubular Polypyrrole for Energy‣torage Applications. Chemistry - A European Journal, 2013, 19, 12306-12312.	3.3	162
13	Synthesis of NASICON-type structured NaTi ₂ (PO ₄) ₃ –graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale, 2014, 6, 6328-6334.	5.6	152
14	Hierarchically Porous Carbon Encapsulating Sulfur as a Superior Cathode Material for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 194-199.	8.0	152
15	Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance. ACS Applied Materials & Interfaces, 2017, 9, 39610-39617.	8.0	152
16	High rate capability and superior cycle stability of a flower-like Sb ₂ S ₃ anode for high-capacity sodium ion batteries. Nanoscale, 2015, 7, 3309-3315.	5.6	147
17	Graphene Caging Silicon Particles for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, e1800635.	10.0	146
18	Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochimica Acta, 2013, 107, 78-84.	5.2	128

#	Article	IF	CITATIONS
19	Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. Journal of Power Sources, 2020, 449, 227481.	7.8	125
20	MoS ₂ â€Nanosheetâ€Decorated 2D Titanium Carbide (MXene) as Highâ€Performance Anodes for Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1560-1565.	3.4	123
21	Mesoporous Silicon Anodes by Using Polybenzimidazole Derived Pyrrolic N-Enriched Carbon toward High-Energy Li-Ion Batteries. ACS Energy Letters, 2017, 2, 1279-1287.	17.4	122
22	Rational Design of Void-Involved Si@TiO ₂ Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 6497-6503.	8.0	117
23	Advanced Energy‧torage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on Carbon Textiles. Advanced Energy Materials, 2013, 3, 1484-1489.	19.5	109
24	Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries. Journal of Power Sources, 2013, 221, 122-127.	7.8	100
25	MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2018, 352, 695-703.	12.7	100
26	Mesoporous NaTi ₂ (PO ₄) ₃ /CMK-3 nanohybrid as anode for long-life Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20659-20666.	10.3	99
27	Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20306-20312.	8.0	96
28	Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16590-16597.	10.3	94
29	Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A, 2017, 5, 23283-23291.	10.3	94
30	Highly enhanced lithium storage capability of LiNi _{0.5} Mn _{1.5} O ₄ by coating with Li ₂ TiO ₃ for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18256-18262.	10.3	93
31	Highâ€Voltage LiNi _{0.45} Cr _{0.1} Mn _{1.45} O ₄ Cathode with Superlong Cycle Performance for Wide Temperature Lithiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1704808.	14.9	91
32	Progress of Nanostructured Electrode Materials for Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700110.	5.3	87
33	Three-Dimensional Coherent Titania–Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 2985-2992.	8.0	84
34	Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Advances, 2014, 4, 7538.	3.6	83
35	Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. Journal of Materials Chemistry A, 2015, 3, 23268-23273.	10.3	82
36	Effect of Graphene Modified Cu Current Collector on the Performance of Li ₄ Ti ₅ O ₁₂ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30926-30932.	8.0	81

#	Article	IF	CITATIONS
37	N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	10.3	70
38	Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage. Nano Energy, 2019, 59, 464-471.	16.0	70
39	From biomolecule to Na ₃ V ₂ (PO ₄) ₃ /nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18606-18612.	10.3	65
40	Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18766-18773.	8.0	65
41	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	6.8	65
42	Trivalent Ti self-doped Li 4 Ti 5 O 12 : A high performance anode material for lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2015, 757, 1-7.	3.8	63
43	Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 12134-12144.	10.3	63
44	A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries. Electrochimica Acta, 2014, 133, 209-216.	5.2	59
45	Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm, 2012, 14, 4284.	2.6	58
46	Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 3956-3966.	10.3	58
47	Porous NiCo ₂ O ₄ nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 24309-24314.	10.3	57
48	Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. Journal of Power Sources, 2020, 469, 228415.	7.8	57
49	Enhanced Performance of Aqueous Sodiumâ€lon Batteries Using Electrodes Based on the NaTi ₂ (PO ₄) ₃ /MWNTs–Na _{0.44} MnO ₂ System. Energy Technology, 2014, 2, 705-712.	3.8	56
50	Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battery. Electrochimica Acta, 2012, 62, 408-415.	5.2	54
51	Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 11165-11171.	8.0	49
52	Self-supported electrodes of Na ₂ Ti ₃ O ₇ nanoribbon array/graphene foam and graphene foam for quasi-solid-state Na-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 5806-5812.	10.3	48
53	Aerosolâ \in Spray Pyrolysis toward Preparation of Nanostructured Materials for Batteries and Supercapacitors. Small Methods, 2018, 2, 1700272.	8.6	48
54	High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochimica Acta, 2018, 268, 512-519.	5.2	46

#	Article	IF	CITATIONS
55	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. Nano-Micro Letters, 2020, 12, 183.	27.0	45
56	Enhanced Lithium‧torage Performance from Threeâ€Dimensional MoS ₂ Nanosheets/Carbon Nanotube Paper. ChemElectroChem, 2014, 1, 1118-1125.	3.4	43
57	Excellent cycling stability and superior rate capability of a graphene–amorphous FePO ₄ porous nanowire hybrid as a cathode material for sodium ion batteries. Nanoscale, 2016, 8, 8495-8499.	5.6	42
58	Bifunctional Redox Mediator Supported by an Anionic Surfactant for Long-Cycle Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2659-2666.	17.4	42
59	Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries. Journal of Electroanalytical Chemistry, 2018, 818, 10-18.	3.8	42
60	Fabrication of a sandwich structured electrode for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 14280.	10.3	40
61	Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. Journal of Alloys and Compounds, 2014, 587, 171-176.	5.5	39
62	A functional interlayer as a polysulfides blocking layer for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2018, 42, 1431-1436.	2.8	39
63	Electrospun Hierarchical Li ₄ Ti _{4.95} Nb _{0.05} O ₁₂ /Carbon Composite Nanofibers for High Rate Lithium Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A426-A430.	2.9	37
64	Synthesis of hydrogenated TiO ₂ –reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9150-9155.	10.3	35
65	Design of a Nitrogenâ€Doped, Carbonâ€Coated Li ₄ Ti ₅ O ₁₂ Nanocomposite with a Core–Shell Structure and Its Application for Highâ€Rate Lithiumâ€Ion Batteries. ChemPlusChem, 2014, 79, 128-133.	2.8	32
66	Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithiumâ€ion Batteries. Particle and Particle Systems Characterization, 2015, 32, 364-372.	2.3	32
67	Aerosol-Assisted Synthesis of Spherical Sb/C Composites as Advanced Anodes for Lithium Ion and Sodium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6381-6387.	5.1	32
68	Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale, 2013, 5, 11087.	5.6	28
69	Rhombohedral NASICON-structured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Advances, 2014, 4, 8627.	3.6	28
70	Boron and nitrogen dual-doped carbon as a novel cathode for high performance hybrid ion capacitors. Chinese Chemical Letters, 2018, 29, 624-628.	9.0	28
71	The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination. Electrochimica Acta, 2019, 303, 110-117.	5.2	27
72	Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Hollow Microspheres and Their Lithiumâ€6torage Properties. ChemElectroChem, 2015, 2, 127-133.	3.4	25

#	Article	IF	CITATIONS
73	Design of nanoconfined MWNTs@NaTi2(PO4)3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Applied Materials Today, 2016, 4, 54-61.	4.3	24
74	Synchronous crystal growth and etching optimization of Prussian blue from a single iron-source as high-rate cathode for sodium-ion batteries. Electrochimica Acta, 2020, 341, 136057.	5.2	24
75	Electrodeposited binder-free CoMn LDH/CFP electrode with high electrochemical performance for asymmetric supercapacitor. Ionics, 2020, 26, 1389-1396.	2.4	22
76	Perovskite-type CaMnO3 anode material for highly efficient and stable lithium ion storage. Journal of Colloid and Interface Science, 2021, 584, 698-705.	9.4	21
77	Highâ€Voltage Li ₂ SiO ₃ â^'LiNi _{0.5} Mn _{1.5} O ₄ Hollow Spheres Prepared through In Situ Aerosol Spray Pyrolysis towards Highâ€Energy Liâ€ion Batteries. ChemElectroChem, 2018, 5, 1212-1218.	3.4	19
78	Electrochemical Deposition Enables Freestanding CoNi Layered Double Hydroxide/MnO _{<i>X</i>} Electrode with Enhanced Electrochemical Properties for Asymmetric Supercapacitors. Energy Technology, 2019, 7, 1900680.	3.8	19
79	Nanoâ€ s ized Titanium Nitride Functionalized Separator Improves Cycling Performance of Lithium Sulfur Batteries. ChemistrySelect, 2019, 4, 698-704.	1.5	19
80	High performance three-dimensional Ge/cyclized-polyacrylonitrile thin film anodes prepared by RF magnetron sputtering for lithium ion batteries. Journal of Materials Science, 2014, 49, 2279-2285.	3.7	18
81	Engineering MoS2 Nanosheets Anchored on Metal Organic Frameworks Derived Carbon Polyhedra for Superior Lithium and Potassium Storage. Frontiers in Energy Research, 2019, 7, .	2.3	18
82	Mechano-chemical synthesis of nanostructured FePO ₄ /MWCNTs composites as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19536-19541.	10.3	16
83	Metallic Mo ₂ C Quantum Dots Confined in Functional Carbon Nanofiber Films toward Efficient Sodium Storage: Heterogeneous Interface Engineering and Charge-Storage Mechanism. ACS Applied Energy Materials, 2022, 5, 1114-1125.	5.1	16
84	Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. Journal of Electroanalytical Chemistry, 2016, 762, 1-6.	3.8	14
85	Facile fabrication of PS/Cu2S/Ag sandwich structure as SERS substrate for ultra-sensitive detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120370.	3.9	14
86	Encapsulating silicon particles by graphitic carbon enables High-performance Lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 1562-1570.	9.4	13
87	Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials, 2018, 1, 948-955.	5.1	12
88	Graphene scrolls coated Sb2S3 nanowires as anodes for sodium and lithium ion batteries. Nano Structures Nano Objects, 2018, 15, 197-204.	3.5	12
89	Encapsulating Oxygenâ€Deficient TiNb ₂₄ O ₆₂ Microspheres by Nâ€Doped Carbon Nanolayer Boosts Capacity and Stability of Lithiumâ€Ion Battery. Batteries and Supercaps, 2020, 3, 1360-1369.	4.7	10
90	Facile Fabrication of Binder-Free CoZn LDH/CFP Electrode with Enhanced Capacitive Properties for Asymmetric Supercapacitor. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3953-3961.	3.7	10

#	Article	IF	CITATIONS
91	Dealloying Synthesis of Silicon Nanotubes for Highâ€Performance Lithium Ion Batteries. ChemPhysChem, 2022, 23, e202200233.	2.1	10
92	Controlled synthesis of a PS/Au/ZIF-8 hybrid structure as a SERS substrate for ultrasensitive detection. New Journal of Chemistry, 2021, 45, 1355-1362.	2.8	9
93	Effect of Pre-Punched Current Collector for Lithiation on the Electrochemical Performance of Lithium-Ion Capacitor. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 780-786.	4.9	8
94	Highly Dispersed Antimony–Bismuth Alloy Encapsulated in Carbon Nanofibers for Ultrastable K-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6587-6596.	4.6	7
95	Preparation and Electrochemical Performance of Carbon Nanotubes/ Graphene Oxide/Sulfur Complex Cathode Material. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 546-552.	4.9	6
96	Tubular Graphene Nano-Scroll Coated Silicon for High Rate Performance Lithium-Ion Battery. Frontiers in Energy Research, 2020, 8, .	2.3	6
97	Waste utilization of crab shell: 3D hierarchical porous carbon towards high-performance Na/Li storage. New Journal of Chemistry, 2021, 45, 19439-19445.	2.8	6
98	Catalytic Growth of Graphitic Carbonâ€Coated Silicon as Highâ€Performance Anodes for Lithium Storage. Energy Technology, 2019, 7, 1900502.	3.8	5
99	Li3V2(PO4)3/nitrogen-doped reduced graphene oxide nanocomposite with enhanced lithium storage properties. Journal of Solid State Electrochemistry, 2016, 20, 1983-1990.	2.5	4
100	Role of surface ligands on CdSe/CdS QDs in affecting the charge separation and photocatalytic behavior in reducing the graphene oxide. Journal of Materials Science: Materials in Electronics, 2019, 30, 9363-9371.	2.2	3
101	Sol-Gel Synthesis and Electrochemical Performance of Porous LiMnPO ₄ /MWCNT Composites. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2123-2128.	4.9	3
102	Aerosol-Assisted Assembly of Mesoporous Carbon Spheres With Fast and Stable K-ion Storage. Frontiers in Chemistry, 2020, 8, 784.	3.6	2
103	Preparation and Electrochemical Lithium Storage of Titanium Dioxide@Multi-walled Carbon Nanotubes(TiO2@MWNTs) Nanocomposites. Acta Chimica Sinica, 2012, 70, 15.	1.4	2
104	Dealloying Synthesis of Silicon Nanotubes for Highâ€Performance Lithium Ion Batteries. ChemPhysChem, 2022, , .	2.1	2
105	HIERARCHICAL Li4Ti5O12 MICROSPHERES AS A HIGH POWER ANODE MATERIAL FOR LITHIUM ION BATTERIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340013.	1.8	0
106	Front Cover: Dealloying Synthesis of Silicon Nanotubes for Highâ€Performance Lithium Ion Batteries (ChemPhysChem 9/2022). ChemPhysChem, 2022, 23, .	2.1	0