M Azim Surani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6530399/publications.pdf Version: 2024-02-01

197 papers	31,724 citations	6254 80 h-index	4432 172 g-index
213	213	213	26615
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sequential enhancer state remodelling defines human germline competence and specification. Nature Cell Biology, 2022, 24, 448-460.	10.3	27
2	Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Reports, 2021, 34, 108735.	6.4	43
3	Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nature Communications, 2021, 12, 1328.	12.8	30
4	DNMTs Play an Important Role in Maintaining the Pluripotency of Leukemia Inhibitory Factor-Dependent Embryonic Stem Cells. Stem Cell Reports, 2021, 16, 582-596.	4.8	12
5	Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports, 2021, 16, 1078-1092.	4.8	21
6	Human embryo research, stem cell-derived embryo models and inÂvitro gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Reports, 2021, 16, 1416-1424.	4.8	59
7	Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. Cell Reports, 2021, 37, 109812.	6.4	37
8	A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nature Communications, 2020, 11, 1282.	12.8	71
9	Activin A and BMP4 Signaling Expands Potency of Mouse Embryonic Stem Cells in Serum-Free Media. Stem Cell Reports, 2020, 14, 241-255.	4.8	13
10	The unfolding body plan of primate embryos in culture. Cell Research, 2020, 30, 103-104.	12.0	0
11	Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications, 2019, 10, 500.	12.8	91
12	Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21, 687-699.	10.3	261
13	Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Current Topics in Developmental Biology, 2019, 135, 35-89.	2.2	31
14	Metabolic regulation of pluripotency and germ cell fate through αâ€ketoglutarate. EMBO Journal, 2019, 38, .	7.8	77
15	Testing the role of SOX15 in human primordial germ cell fate. Wellcome Open Research, 2019, 4, 122.	1.8	18
16	Testing the role of SOX15 in human primordial germ cell fate. Wellcome Open Research, 2019, 4, 122.	1.8	11
17	Esrrb Complementation Rescues Development of Nanog-Null Germ Cells. Cell Reports, 2018, 22, 332-339.	6.4	45
18	Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nature Cell Biology, 2018, 20, 144-151.	10.3	182

#	Article	IF	CITATIONS
19	A PAX5–OCT4–PRDM1 developmental switch specifies human primordial germ cells. Nature Cell Biology, 2018, 20, 655-665.	10.3	33
20	Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Research, 2018, 28, 22-34.	12.0	43
21	Branch-recombinant Gaussian processes for analysis of perturbations in biological time series. Bioinformatics, 2018, 34, i1005-i1013.	4.1	7
22	Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Nature Communications, 2018, 9, 4292.	12.8	65
23	Staged profiling of sperm development in sync. Cell Research, 2018, 28, 965-966.	12.0	0
24	Targeted DamID reveals differential binding of mammalian pluripotency factors. Development (Cambridge), 2018, 145, .	2.5	43
25	G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst. ELife, 2018, 7, .	6.0	30
26	SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. Cell Discovery, 2018, 4, 33.	6.7	40
27	On the origin of the human germline. Development (Cambridge), 2018, 145, .	2.5	84
28	What Can Stem Cell Models Tell Us About Human Germ Cell Biology?. Current Topics in Developmental Biology, 2018, 129, 25-65.	2.2	18
29	Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nature Structural and Molecular Biology, 2017, 24, 226-233.	8.2	122
30	Principles of early human development and germ cell program from conserved model systems. Nature, 2017, 546, 416-420.	27.8	245
31	Activation of Lineage Regulators and Transposable Elements across aÂPluripotent Spectrum. Stem Cell Reports, 2017, 8, 1645-1658.	4.8	58
32	Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nature Communications, 2017, 8, 1297.	12.8	52
33	Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells. Methods in Molecular Biology, 2017, 1463, 217-226.	0.9	26
34	Germline competency of human embryonic stem cells depends on eomesoderminâ€. Biology of Reproduction, 2017, 97, 850-861.	2.7	84
35	Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition. ELife, 2017, 6, .	6.0	92
36	Developmental Competence for Primordial Germ Cell Fate. Current Topics in Developmental Biology, 2016, 117, 471-496.	2.2	16

#	Article	IF	CITATIONS
37	Specification and epigenetic programming of the human germ line. Nature Reviews Genetics, 2016, 17, 585-600.	16.3	352
38	DNA (De)Methylation: The Passive Route to Na $ ilde{A}$ vety?. Trends in Genetics, 2016, 32, 592-595.	6.7	5
39	Thirty-five years of endless cell potential. Nature, 2016, 535, 502-503.	27.8	0
40	Human Germline Development from Pluripotent Stem Cellsin vitro. Journal of Mammalian Ova Research, 2016, 33, 79-87.	0.1	2
41	Breaking the germ line–soma barrier. Nature Reviews Molecular Cell Biology, 2016, 17, 136-136.	37.0	13
42	Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. Cell, 2016, 164, 353-364.	28.9	161
43	NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature, 2016, 529, 403-407.	27.8	148
44	A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell, 2015, 161, 1453-1467.	28.9	556
45	Human Germline: A New Research Frontier. Stem Cell Reports, 2015, 4, 955-960.	4.8	23
46	Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4236-45.	7.1	87
47	Germline and Pluripotent Stem Cells. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019422.	5.5	86
48	SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate. Cell, 2015, 160, 253-268.	28.9	687
49	Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration. PLoS ONE, 2015, 10, e0130436.	2.5	31
50	Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. ELife, 2015, 4, .	6.0	96
51	Genomic Reprogramming. , 2014, , 453-463.		0
52	Primoridal germ cell specification: a context-dependent cellular differentiation event. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130543.	4.0	30
53	PRMT5 Protects Genomic Integrity during Global DNA Demethylation in Primordial Germ Cells and Preimplantation Embryos. Molecular Cell, 2014, 56, 564-579.	9.7	122
54	How to make a primordial germ cell. Development (Cambridge), 2014, 141, 245-252.	2.5	111

IF # ARTICLE CITATIONS Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells. Molecular Cell, 2014, 55, 319-331. 271 Epigenetic Reprogramming of Somatic Nuclei via Cell Fusion., 2014, , 11-19. 56 0 Regulatory Principles of Pluripotency: From the Ground State Up. Cell Stem Cell, 2014, 15, 416-430. 11.1 334 Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. 58 2.4 62 Reproductive Medicine and Biology, 2014, 13, 203-215. A tripartite transcription factor network regulates primordial germ cell specification in mice. Nature 10.3 240 Cell Biology, 2013, 15, 905-915. Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency. Stem 60 4.8 115 Cell Reports, 2013, 1, 518-531. Investigating transcriptional states at single-cell-resolution. Current Opinion in Biotechnology, 2013, 24, 69-78. Germline DNA Demethylation Dynamics and Imprint Erasure Through 5-Hydroxymethylcytosine. 62 12.6 687 Science, 2013, 339, 448-452. Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. Glia, 2013, 61, 679-693. Naive pluripotency is associated with global DNA hypomethylation. Nature Structural and Molecular 64 8.2 465 Biology, 2013, 20, 311-316. Genomic Reprogramming., 2013,, 393-398. Primordial Germ-Cell Development and Epigenetic Reprogramming in Mammals. Current Topics in 66 2.2 109 Developmental Biology, 201'3, 104, 149-187. Beyond DNA: Programming and Inheritance of Parental Methylomes. Cell, 2013, 153, 737-739. 28.9 Rebuilding Pluripotency from Primordial Germ Cells. Stem Cell Reports, 2013, 1, 66-78. 68 4.8 63 DNA methylation dynamics during the mammalian life cycle. Philosophical Transactions of the Royal 69 Society B: Biological Sciences, 2013, 368, 20110328. <i>Prdm14</i> promotes germline fate and naive pluripotency by repressing FGF signalling and DNA 70 4.5 145 methylation. EMBO Reports, 2013, 14, 629-637. Reversion of Mouse Postimplantation Epiblast Stem Cells to a NaÃ-ve Pluripotent State by Modulation 71 of Signalling Pathways. Methods in Molecular Biology, 2013, 1074, 15-29. Perceiving signals, building networks, reprogramming germ cell fate. International Journal of 72 0.6 4 Developmental Biology, 2013, 57, 123-132.

#	Article	IF	CITATIONS
73	Untangling the mysteries of maternal inheritance with polyCOMB. EMBO Journal, 2012, 31, 2837-2838.	7.8	0
74	Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development (Cambridge), 2012, 139, 3623-3632.	2.5	130
75	Cellular Reprogramming in Pursuit of Immortality. Cell Stem Cell, 2012, 11, 748-750.	11.1	14
76	Histone variant macroH2A marks embryonic differentiation <i>in vivo</i> and acts as an epigenetic barrier to induced pluripotency. Journal of Cell Science, 2012, 125, 6094-6104.	2.0	92
77	Epiblast Stem Cell-Based System Reveals Reprogramming Synergy of Germline Factors. Cell Stem Cell, 2012, 10, 425-439.	11.1	134
78	The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 110-117.	11.1	23
79	Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Molecular BioSystems, 2012, 8, 744.	2.9	52
80	Combinatorial control of cell fate and reprogramming in the mammalian germline. Current Opinion in Genetics and Development, 2012, 22, 466-474.	3.3	36
81	Detection of CpG methylation patterns by affinity capture methods. , 2012, , 197-209.		1
82	A sporadic super state. Nature, 2012, 487, 43-44.	27.8	15
82 83	A sporadic super state. Nature, 2012, 487, 43-44. Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics, 2012, 28, 164-174.	27.8 6.7	15 163
83	Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics, 2012, 28, 164-174. Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process. PLoS	6.7	163
83 84	Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics, 2012, 28, 164-174. Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process. PLoS ONE, 2012, 7, e30759. Deterministic and Stochastic Allele Specific Gene Expression in Single Mouse Blastomeres. PLoS ONE,	6.7 2.5	163 6
83 84 85	 Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics, 2012, 28, 164-174. Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process. PLoS ONE, 2012, 7, e30759. Deterministic and Stochastic Allele Specific Gene Expression in Single Mouse Blastomeres. PLoS ONE, 2011, 6, e21208. Membrane-Bound Steel Factor Maintains a High Local Concentration for Mouse Primordial Germ Cell 	6.7 2.5 2.5	163 6 134
83 84 85 86	Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Cenetics, 2012, 28, 164-174. Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process. PLoS ONE, 2012, 7, e30759. Deterministic and Stochastic Allele Specific Gene Expression in Single Mouse Blastomeres. PLoS ONE, 2011, 6, e21208. Membrane-Bound Steel Factor Maintains a High Local Concentration for Mouse Primordial Germ Cell Motility, and Defines the Region of Their Migration. PLoS ONE, 2011, 6, e25984.	6.72.52.52.5	163 6 134 28
83 84 85 86 87	Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics, 2012, 28, 164-174. Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process. PLoS ONE, 2012, 7, e30759. Deterministic and Stochastic Allele Specific Gene Expression in Single Mouse Blastomeres. PLoS ONE, 2011, 6, e21208. Membrane-Bound Steel Factor Maintains a High Local Concentration for Mouse Primordial Germ Cell Motility, and Defines the Region of Their Migration. PLoS ONE, 2011, 6, e25984. The transcriptional and signalling networks of pluripotency. Nature Cell Biology, 2011, 13, 490-496.	 6.7 2.5 2.5 2.5 10.3 	163 6 134 28 284

#	Article	IF	CITATIONS
91	RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols, 2010, 5, 516-535.	12.0	450
92	Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes and Development, 2010, 24, 2772-2777.	5.9	287
93	Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development (Cambridge), 2010, 137, 2279-2287.	2.5	133
94	Genome-Wide Identification of Targets and Function of Individual MicroRNAs in Mouse Embryonic Stem Cells. PLoS Genetics, 2010, 6, e1001163.	3.5	39
95	Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis. Cell Stem Cell, 2010, 6, 468-478.	11.1	479
96	Genome-Wide Reprogramming in the Mouse Germ Line Entails the Base Excision Repair Pathway. Science, 2010, 329, 78-82.	12.6	420
97	<i>H19</i> acts as a trans regulator of the imprinted gene network controlling growth in mice. Development (Cambridge), 2009, 136, 3413-3421.	2.5	321
98	ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics and Chromatin, 2009, 2, 12.	3.9	106
99	Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics and Chromatin, 2009, 2, 9.	3.9	95
100	A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature, 2009, 460, 909-913.	27.8	354
101	Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature, 2009, 461, 1292-1295.	27.8	357
102	mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 2009, 6, 377-382.	19.0	2,736
103	Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development (Cambridge), 2009, 136, 1295-1303.	2.5	137
104	Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development (Cambridge), 2009, 136, 3549-3556.	2.5	156
105	Generation of primordial germ cells from pluripotent stem cells. Differentiation, 2009, 78, 116-123.	1.9	59
106	iPS Cells: Mapping the Policy Issues. Cell, 2009, 139, 1032-1037.	28.9	68
107	Resetting the Epigenome beyond Pluripotency in the Germline. Cell Stem Cell, 2009, 4, 493-498.	11.1	81

#	Article	IF	CITATIONS
109	mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. Journal of Biomolecular Techniques, 2009, 20, 266-71.	1.5	30
110	Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 2008, 452, 877-881.	27.8	611
111	Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008, 453, 539-543.	27.8	1,007
112	An intronic DNA sequence within the mouse Neuronatin gene exhibits biochemical characteristics of an ICR and acts as a transcriptional activator in Drosophila. Mechanisms of Development, 2008, 125, 963-973.	1.7	8
113	Reprogramming Primordial Germ Cells (PGC) to Embryonic Germ (EG) Cells. Current Protocols in Stem Cell Biology, 2008, 5, Unit1A.3.	3.0	25
114	Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Developmental Biology, 2008, 313, 674-681.	2.0	48
115	Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States. Cell Stem Cell, 2008, 3, 391-401.	11.1	596
116	A sensitive multiplex assay for piRNA expression. Biochemical and Biophysical Research Communications, 2008, 369, 1190-1194.	2.1	17
117	MicroRNAs are tightly associated with RNA-induced gene silencing complexes in vivo. Biochemical and Biophysical Research Communications, 2008, 372, 24-29.	2.1	26
118	Normal Germ Line Establishment in Mice Carrying a Deletion of the <i>Ifitm/Fragilis</i> Gene Family Cluster. Molecular and Cellular Biology, 2008, 28, 4688-4696.	2.3	116
119	X Chromosome Activity in Mouse XX Primordial Germ Cells. PLoS Genetics, 2008, 4, e30.	3.5	158
120	Reprogramming Primordial Germ Cells into Pluripotent Stem Cells. PLoS ONE, 2008, 3, e3531.	2.5	140
121	MicroRNA Biogenesis Is Required for Mouse Primordial Germ Cell Development and Spermatogenesis. PLoS ONE, 2008, 3, e1738.	2.5	442
122	Maternal microRNAs are essential for mouse zygotic development. Genes and Development, 2007, 21, 644-648.	5.9	496
123	Genetic and Epigenetic Regulators of Pluripotency. Cell, 2007, 128, 747-762.	28.9	611
124	Germ cells: The eternal link between generations. Comptes Rendus - Biologies, 2007, 330, 474-478.	0.2	17
125	Germ Cell Specification in Mice. Science, 2007, 316, 394-396.	12.6	271
126	<i>Dppa2</i> and <i>Dppa4</i> Are Closely Linked SAP Motif Genes Restricted to Pluripotent Cells and the Germ Line. Stem Cells, 2007, 25, 19-28.	3.2	109

#	Article	IF	CITATIONS
127	Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors. BMC Developmental Biology, 2007, 7, 140.	2.1	40
128	Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Developmental Biology, 2007, 7, 53.	2.1	100
129	Anne McLaren (1927–2007). Nature, 2007, 448, 764-765.	27.8	1
130	Targeted chromosome elimination from ES-somatic hybrid cells. Nature Methods, 2007, 4, 23-25.	19.0	90
131	A new route to rejuvenation. Nature, 2006, 443, 284-285.	27.8	23
132	Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biology, 2006, 8, 623-630.	10.3	425
133	220-plex microRNA expression profile of a single cell. Nature Protocols, 2006, 1, 1154-1159.	12.0	97
134	The Role of Exogenous Fibroblast Growth Factor-2 on the Reprogramming of Primordial Germ Cells into Pluripotent Stem Cells. Stem Cells, 2006, 24, 1441-1449.	3.2	94
135	Generation ofstella-GFP transgenic mice: A novel tool to study germ cell development. Genesis, 2006, 44, 75-83.	1.6	150
136	Loss of TSLC1 Causes Male Infertility Due to a Defect at the Spermatid Stage of Spermatogenesis. Molecular and Cellular Biology, 2006, 26, 3595-3609.	2.3	96
137	Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proceedings of the United States of America, 2006, 103, 11184-11188.	7.1	64
138	MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Research, 2006, 34, e9-e9.	14.5	306
139	Analysis ofEsg1Expression in Pluripotent Cells and the Germline Reveals Similarities withOct4andSox2and Differences Between Human Pluripotent Cell Lines. Stem Cells, 2005, 23, 1436-1442.	3.2	70
140	Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Reports, 2005, 6, 748-754.	4.5	52
141	Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 2005, 436, 207-213.	27.8	915
142	Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap. Development (Cambridge), 2005, 132, 3947-3961.	2.5	71
143	Blimp1 and the Emergence of the Germ Line during Development in the Mouse. Cell Cycle, 2005, 4, 1736-1740.	2.6	78
144	Nuclear Reprogramming by Human Embryonic Stem Cells. Cell, 2005, 122, 653-654.	28.9	17

#	Article	IF	CITATIONS
145	Altered primordial germ cell migration in the absence of transforming growth factor β signaling via ALK5. Developmental Biology, 2005, 284, 194-203.	2.0	53
146	Genomic Reprogramming. , 2004, , 657-662.		0
147	DEVELOPMENT: Enhanced: Programming the X Chromosome. Science, 2004, 303, 633-634.	12.6	18
148	How to make eggs and sperm. Nature, 2004, 427, 106-107.	27.8	45
149	Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1303-1309.	2.6	198
150	Differential Demethylation of Paternal and Maternal Genomes in the Preimplantation Mouse Embryo: Implications for Mammalian Development. , 2004, , 207-214.		2
151	Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila. Development Genes and Evolution, 2003, 213, 336-344.	0.9	21
152	stella Is a Maternal Effect Gene Required for Normal Early Development in Mice. Current Biology, 2003, 13, 2110-2117.	3.9	352
153	Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis, 2003, 35, 88-93.	1.6	599
154	Differentiation and gene regulation Programming, reprogramming and regeneration. Current Opinion in Genetics and Development, 2003, 13, 445-447.	3.3	6
155	Specification of germ cell fate in mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1363-1370.	4.0	82
156	Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development (Cambridge), 2003, 130, 4235-4248.	2.5	294
157	Methylation-dependent silencing at the H19 imprinting control region by MeCP2. Nucleic Acids Research, 2002, 30, 1139-1144.	14.5	85
158	Genomic imprinting. Advances in Developmental Biology and Biochemistry, 2002, 12, 233-264.	0.3	0
159	Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of Development, 2002, 117, 15-23.	1.7	1,091
160	Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. Differentiation, 2002, 69, 216-225.	1.9	36
161	A molecular programme for the specification of germ cell fate in mice. Nature, 2002, 418, 293-300.	27.8	791
162	Nuclear reprogramming—alchemy or analysis?. Nature Biotechnology, 2002, 20, 445-446.	17.5	19

#	Article	IF	CITATIONS
163	Imprinting and the Epigenetic Asymmetry Between Parental Genomes. Science, 2001, 293, 1086-1089.	12.6	388
164	Reprogramming of genome function through epigenetic inheritance. Nature, 2001, 414, 122-128.	27.8	416
165	The <i>Polycomb</i> -Group Gene <i>Ezh2</i> Is Required for Early Mouse Development. Molecular and Cellular Biology, 2001, 21, 4330-4336.	2.3	820
166	Identification of an imprinted gene, <i>Meg3</i> / <i>Gtl2</i> and its human homologue <i>MEG3</i> , first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes To Cells, 2000, 5, 211-220.	1.2	343
167	The Imprinted Gene Peg3 Is Not Essential for Tumor Necrosis Factor α Signaling. Laboratory Investigation, 2000, 80, 1509-1511.	3.7	10
168	Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature, 2000, 404, 95-99.	27.8	547
169	Appropriate expression of the mouse H19 gene utilises three or more distinct enhancer regions spread over more than 130 kb. Mechanisms of Development, 2000, 91, 365-368.	1.7	30
170	A Human p57KIP2 Transgene Is Not Activated by Passage Through the Maternal Mouse Germline. Human Molecular Genetics, 1999, 8, 2211-2219.	2.9	22
171	Agouti germ line gets acquisitive. Nature Genetics, 1999, 23, 254-256.	21.4	17
172	The Mechanisms of Genomic Imprinting. Results and Problems in Cell Differentiation, 1999, 25, 91-118.	0.7	11
173	Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nature Genetics, 1998, 20, 163-169.	21.4	524
174	Mechanism of imprinting on mouse distal chromosome 7. Genetical Research, 1998, 72, 237-245.	0.9	14
175	Imprinting and Gene Silencing in Mice and <i>Drosophila</i> . Novartis Foundation Symposium, 1998, 214, 233-250.	1.1	4
176	An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nature Genetics, 1997, 16, 171-173.	21.4	105
177	Imprinted genes and regulation of gene expression by epigenetic inheritance. Current Opinion in Cell Biology, 1996, 8, 348-353.	5.4	85
178	Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nature Genetics, 1996, 12, 186-190.	21.4	244
179	Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nature Genetics, 1995, 11, 52-59.	21.4	271
180	Parthenogenesis in man. Nature Genetics, 1995, 11, 111-113.	21.4	17

#	Article	IF	CITATIONS
181	Experimental embryological analysis of genetic imprinting in mouse development. Genesis, 1994, 15, 515-522.	2.1	42
182	Impressions of imprints. Trends in Genetics, 1994, 10, 415-417.	6.7	17
183	The non-viability of uniparental mouse conceptuses correlates with the loss of the products of imprinted genes. Mechanisms of Development, 1994, 46, 55-62.	1.7	55
184	Manipulation of the Repertoire of Digestive Enzymes Secreted into the Gastrointestinal Tract of Transgenic Mice. Bio/technology, 1993, 11, 376-379.	1.5	61
185	Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature, 1993, 362, 751-755.	27.8	415
186	[44] Manipulations of genetic constitution by nuclear transplantation. Methods in Enzymology, 1993, 225, 732-744.	1.0	10
187	DNA methylation and genomic imprinting in mammals. , 1993, 64, 469-486.		30
188	Genomic imprinting: developmental significance and molecular mechanism. Current Opinion in Genetics and Development, 1991, 1, 241-246.	3.3	49
189	Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus. European Journal of Immunology, 1991, 21, 1323-1326.	2.9	84
190	Genome imprinting and development in the mouse. Development (Cambridge), 1990, 108, 89-98.	2.5	106
191	Imprinting by DNA methylation: from transgenes to endogenous gene sequences. Development (Cambridge), 1990, 108, 99-106.	2.5	55
192	Provision of the immunoglobulin heavy chain enhancer downstream of a test gene is sufficient to confer lymphoid-specific expression in transgenic mice. European Journal of Immunology, 1987, 17, 465-469.	2.9	38
193	Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 1987, 328, 248-251.	27.8	480
194	Generation of single cell microRNA expression profile. , 0, , 489-496.		0
195	Active DNA demethylation. , 0, , 91-103.		0
196	Epigenetic stability of human pluripotent stem cells. , 0, , 118-133.		0
197	MicroRNAs in embryonic stem cells. , 0, , 163-178.		0