Catrin E Moore List of Publications by Year in descending order Source: https://exaly.com/author-pdf/6530177/publications.pdf Version: 2024-02-01 81434 37326 15,466 107 41 100 citations h-index g-index papers 118 118 118 18305 docs citations times ranked citing authors all docs | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, The, 2022, 399, 629-655. | 6.3 | 4,915 | | 2 | Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in <i>Klebsiella pneumoniae</i> , an urgent threat to public health. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3574-81. | 3.3 | 942 | | 3 | Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021, 184, 64-75.e11. | 13.5 | 843 | | 4 | Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9786-9791. | 3.3 | 830 | | 5 | Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis. BMC Medicine, 2020, 18, 1. | 2.3 | 660 | | 6 | How Clonal Is Staphylococcus aureus ?. Journal of Bacteriology, 2003, 185, 3307-3316. | 1.0 | 560 | | 7 | Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus.
Infection and Immunity, 2002, 70, 4987-4996. | 1.0 | 539 | | 8 | Recombination within natural populations of pathogenic bacteria: Short-term empirical estimates and long-term phylogenetic consequences. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 182-187. | 3.3 | 489 | | 9 | A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nature Genetics, 2007, 39, 523-528. | 9.4 | 411 | | 10 | Microarrays Reveal that Each of the Ten Dominant Lineages of Staphylococcus aureus Has a Unique Combination of Surface-Associated and Regulatory Genes. Journal of Bacteriology, 2006, 188, 669-676. | 1.0 | 303 | | 11 | MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet, The, 2002, 359, 1569-1573. | 6.3 | 302 | | 12 | Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131. MBio, 2016, 7, e02162. | 1.8 | 289 | | 13 | Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planetary Health, The, 2021, 5, e893-e904. | 5.1 | 284 | | 14 | SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, . | 6.0 | 278 | | 15 | Risk Factors For Hematogenous Complications of Intravascular CatheterAssociated Staphylococcus aureus Bacteremia. Clinical Infectious Diseases, 2005, 40, 695-703. | 2.9 | 235 | | 16 | Causes of non-malarial fever in Laos: a prospective study. The Lancet Global Health, 2013, 1, e46-e54. | 2.9 | 197 | | 17 | Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. Journal of Clinical Virology, 2018, 101, 11-17. | 1.6 | 161 | | 18 | Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infectious Diseases, The, 2016, 16, 285-286. | 4.6 | 119 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 19 | Seroprotection against serogroup C meningococcal disease in adolescents in the United Kingdom: observational study. BMJ: British Medical Journal, 2008, 336, 1487-1491. | 2.4 | 108 | | 20 | Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: an analysis of the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 37-59. | 4.6 | 104 | | 21 | A Link Between Virulence and Ecological Abundance in Natural Populations of Staphylococcus aureus. Science, 2001, 292, 114-116. | 6.0 | 100 | | 22 | Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 60-79. | 4.6 | 95 | | 23 | A Prospective Study of the Causes of Febrile Illness Requiring Hospitalization in Children in Cambodia. PLoS ONE, 2013, 8, e60634. | 1.1 | 88 | | 24 | Comparison of Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis as Tools for Typing Staphylococcus aureus Isolates in a Microepidemiological Setting. Journal of Clinical Microbiology, 2002, 40, 3764-3770. | 1.8 | 84 | | 25 | Lack of Association between Toll-Like Receptor 2 Polymorphisms and Susceptibility to Severe Disease Caused by Staphylococcus aureus. Vaccine Journal, 2004, 11, 1194-1197. | 2.6 | 84 | | 26 | Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for Transmission Analyses. Journal of Clinical Microbiology, 2015, 53, 2122-2131. | 1.8 | 84 | | 27 | Reduction of Invasive Pneumococcal Disease 3 Years After the Introduction of the 13-Valent Conjugate Vaccine in the Oxfordshire Region of England. Journal of Infectious Diseases, 2014, 210, 1001-1011. | 1.9 | 83 | | 28 | Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. PLoS ONE, 2017, 12, e0182307. | 1.1 | 82 | | 29 | llºB Genetic Polymorphisms and Invasive Pneumococcal Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 181-187. | 2.5 | 80 | | 30 | Host Genetic Factors and Vaccine-Induced Immunity to Hepatitis B Virus Infection. PLoS ONE, 2008, 3, e1898. | 1.1 | 74 | | 31 | Genetic Variation at thelL10Gene Locus Is Associated with Severity of Respiratory Syncytial Virus Bronchiolitis. Journal of Infectious Diseases, 2005, 191, 1705-1709. | 1.9 | 72 | | 32 | Variants of the Chemokine Receptor CCR5 Are Associated with Severe Bronchiolitis Caused by Respiratory Syncytial Virus. Journal of Infectious Diseases, 2003, 188, 904-907. | 1.9 | 70 | | 33 | Improving the estimation of the global burden of antimicrobial resistant infections. Lancet Infectious Diseases, The, 2019, 19, e392-e398. | 4.6 | 68 | | 34 | Contrasting Spatial Distribution and Risk Factors for Past Infection with Scrub Typhus and Murine Typhus in Vientiane City, Lao PDR. PLoS Neglected Tropical Diseases, 2010, 4, e909. | 1.3 | 67 | | 35 | Limited Polymorphism in the Dihydropteroate Synthetase Gene (dhps) of Plasmodium vivax Isolates from Thailand. Antimicrobial Agents and Chemotherapy, 2005, 49, 4393-4395. | 1.4 | 63 | | 36 | Haplotype mapping of the bronchiolitis susceptibility locus near IL8. Human Genetics, 2004, 114, 272-279. | 1.8 | 59 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 37 | Pantonâ \in Valentine leucocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS. ELife, 2019, 8, . | 2.8 | 56 | | 38 | Decline of meticillin-resistant Staphylococcus aureus in Oxfordshire hospitals is strain-specific and preceded infection-control intensification. BMJ Open, 2011, 1, e000160-e000160. | 0.8 | 55 | | 39 | Microbiology Investigation Criteria for Reporting Objectively (MICRO): a framework for the reporting and interpretation of clinical microbiology data. BMC Medicine, 2019, 17, 70. | 2.3 | 55 | | 40 | PTPN22 and invasive bacterial disease. Nature Genetics, 2006, 38, 499-500. | 9.4 | 54 | | 41 | Antimicrobial Resistance in Invasive Bacterial Infections in Hospitalized Children, Cambodia, 2007–2016. Emerging Infectious Diseases, 2018, 24, 841-851. | 2.0 | 50 | | 42 | Intrinsic fluoroquinolone resistance in Orientia tsutsugamushi. International Journal of Antimicrobial Agents, 2010, 35, 338-341. | 1.1 | 46 | | 43 | Clinically and Microbiologically Derived Azithromycin Susceptibility Breakpoints for Salmonella enterica Serovars Typhi and Paratyphi A. Antimicrobial Agents and Chemotherapy, 2015, 59, 2756-2764. | 1.4 | 44 | | 44 | Molecular Characterization of Cryptosporidium Species and Giardia duodenalis from Symptomatic Cambodian Children. PLoS Neglected Tropical Diseases, 2016, 10, e0004822. | 1.3 | 42 | | 45 | Functional polymorphisms in the FCN2 gene are not associated with invasive pneumococcal disease.
Molecular Immunology, 2007, 44, 3267-3270. | 1.0 | 40 | | 46 | The Molecular and Spatial Epidemiology of Typhoid Fever in Rural Cambodia. PLoS Neglected Tropical Diseases, 2016, 10, e0004785. | 1.3 | 40 | | 47 | Randomized Soil Survey of the Distribution of <i>Burkholderia pseudomallei</i> in Rice Fields in Laos. Applied and Environmental Microbiology, 2011, 77, 532-536. | 1.4 | 39 | | 48 | Enteric fever in Cambodian children is dominated by multidrug-resistant H58 Salmonella enterica serovar Typhi with intermediate susceptibility to ciprofloxacin. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 718-724. | 0.7 | 38 | | 49 | Changes in antibiotic resistance in animals. Science, 2019, 365, 1251-1252. | 6.0 | 38 | | 50 | Predictive diagnostic value of the tourniquet test for the diagnosis of dengue infection in adults. Tropical Medicine and International Health, 2011, 16, 127-133. | 1.0 | 37 | | 51 | Loop-Mediated Isothermal Amplification for Rickettsia typhi (the Causal Agent of Murine Typhus):
Problems with Diagnosis at the Limit of Detection. Journal of Clinical Microbiology, 2014, 52, 832-838. | 1.8 | 36 | | 52 | Surveillance and monitoring of antimicrobial resistance: limitations and lessons from the GRAM project. BMC Medicine, 2019, 17, 176. | 2.3 | 36 | | 53 | Pediatric Bloodstream Infections in Cambodia, 2007 to 2011. Pediatric Infectious Disease Journal, 2013, 32, e272-e276. | 1.1 | 34 | | 54 | Evaluation of the Diagnostic Accuracy of a Typhoid IgM Flow Assay for the Diagnosis of Typhoid Fever in Cambodian Children Using a Bayesian Latent Class Model Assuming an Imperfect Gold Standard. American Journal of Tropical Medicine and Hygiene, 2014, 90, 114-120. | 0.6 | 34 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 55 | A Prospective, Open-label, Randomized Trial of Doxycycline Versus Azithromycin for the Treatment of Uncomplicated Murine Typhus. Clinical Infectious Diseases, 2019, 68, 738-747. | 2.9 | 34 | | 56 | NFKBIZ polymorphisms and susceptibility to pneumococcal disease in European and African populations. Genes and Immunity, 2010, 11, 319-325. | 2.2 | 33 | | 57 | Urine Antibiotic Activity in Patients Presenting to Hospitals in Laos: Implications for Worsening Antibiotic Resistance. American Journal of Tropical Medicine and Hygiene, 2011, 85, 295-302. | 0.6 | 32 | | 58 | Pediatric Suppurative Parotitis in Cambodia Between 2007 and 2011. Pediatric Infectious Disease Journal, 2012, 31, 865-868. | 1.1 | 32 | | 59 | An Epidemic of Dengue-1 in a Remote Village in Rural Laos. PLoS Neglected Tropical Diseases, 2013, 7, e2360. | 1.3 | 31 | | 60 | Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone. Journal of Hospital Infection, 2014, 86, 83-89. | 1.4 | 31 | | 61 | The Aetiologies and Impact of Fever in Pregnant Inpatients in Vientiane, Laos. PLoS Neglected Tropical Diseases, 2016, 10, e0004577. | 1.3 | 31 | | 62 | Burkholderia pseudomallei Detection in Surface Water in Southern Laos Using Moore's Swabs.
American Journal of Tropical Medicine and Hygiene, 2012, 86, 872-877. | 0.6 | 30 | | 63 | The value of intermittent point-prevalence surveys of healthcare-associated infections for evaluating infection control interventions at Angkor Hospital for Children, Siem Reap, Cambodia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2013, 107, 248-253. | 0.7 | 29 | | 64 | A retrospective analysis of melioidosis in Cambodian children, 2009–2013. BMC Infectious Diseases, 2016, 16, 688. | 1.3 | 29 | | 65 | Management of Central Nervous System Infections, Vientiane, Laos, 2003–2011. Emerging Infectious Diseases, 2019, 25, 898-910. | 2.0 | 29 | | 66 | Fatal Chromobacterium violaceum septicaemia in northern Laos, a modified oxidase test and post-mortem forensic family G6PD analysis. Annals of Clinical Microbiology and Antimicrobials, 2009, 8, 24. | 1.7 | 28 | | 67 | Enhanced Determination of Streptococcus pneumoniae Serotypes Associated with Invasive Disease in Laos by Using a Real-Time Polymerase Chain Reaction Serotyping Assay with Cerebrospinal Fluid. American Journal of Tropical Medicine and Hygiene, 2010, 83, 451-457. | 0.6 | 28 | | 68 | Characteristics of CTX-M ESBL-producing Escherichia coli isolates from the Lao People's Democratic Republic, 2004-09. Journal of Antimicrobial Chemotherapy, 2012, 67, 240-242. | 1.3 | 25 | | 69 | Rapid Diagnostic Tests for Dengue Virus Infection in Febrile Cambodian Children: Diagnostic Accuracy and Incorporation into Diagnostic Algorithms. PLoS Neglected Tropical Diseases, 2015, 9, e0003424. | 1.3 | 24 | | 70 | Antimicrobial susceptibility of uropathogens isolated from Cambodian children. Paediatrics and International Child Health, 2016, 36, 113-117. | 0.3 | 24 | | 71 | Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17. The Lancet Global Health, 2020, 8, e1038-e1060. | 2.9 | 23 | | 72 | Biliary Cirrhosis in a Child with Inherited Interleukin-12 Deficiency. Journal of Tropical Pediatrics, 2008, 54, 269-271. | 0.7 | 22 | | # | Article | IF | Citations | |----|--|-----|-----------| | 73 | A Prospective Assessment of the Accuracy of Commercial IgM ELISAs in Diagnosis of Japanese
Encephalitis Virus Infections in Patients with Suspected Central Nervous System Infections in Laos.
American Journal of Tropical Medicine and Hygiene, 2012, 87, 171-178. | 0.6 | 22 | | 74 | The Epidemiology of Pediatric Bone and Joint Infections in Cambodia, 2007-11. Journal of Tropical Pediatrics, 2013, 59, 36-42. | 0.7 | 22 | | 75 | Common NFKBIL2 polymorphisms and susceptibility to pneumococcal disease: a genetic association study. Critical Care, 2010, 14, R227. | 2.5 | 21 | | 76 | Etiologies and Resistance Profiles of Bacterial Community-Acquired Pneumonia in Cambodian and Neighboring Countries' Health Care Settings: A Systematic Review (1995 to 2012). PLoS ONE, 2014, 9, e89637. | 1.1 | 21 | | 77 | Intestinal Parasite Infections in Symptomatic Children Attending Hospital in Siem Reap, Cambodia. PLoS ONE, 2015, 10, e0123719. | 1.1 | 18 | | 78 | Single Nucleotide Polymorphisms in the Toll-Like Receptor 3 and CD44 Genes Are Associated with Persistence of Vaccine-Induced Immunity to the Serogroup C Meningococcal Conjugate Vaccine. Vaccine Journal, 2012, 19, 295-303. | 3.2 | 17 | | 79 | Epidemiology of paediatric gastrointestinal colonisation by extended spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates in north-west Cambodia. BMC Microbiology, 2019, 19, 59. | 1.3 | 17 | | 80 | First National Workshop on Antibiotic Resistance in Cambodia: Phnom Penh, Cambodia, 16–18 November 2011. Journal of Global Antimicrobial Resistance, 2013, 1, 31-34. | 0.9 | 15 | | 81 | Urinary antibiotic activity in paediatric patients attending an outpatient department in northâ€western
Cambodia. Tropical Medicine and International Health, 2015, 20, 24-28. | 1.0 | 15 | | 82 | Characterisation of Invasive Streptococcus pneumoniae Isolated from Cambodian Children between 2007 – 2012. PLoS ONE, 2016, 11, e0159358. | 1.1 | 15 | | 83 | Changing Patterns of Gastrointestinal Parasite Infections in Cambodian Children: 2006-2011. Journal of Tropical Pediatrics, 2012, 58, 509-512. | 0.7 | 14 | | 84 | Fatal bacteremia due to immotile Vibrio cholerae serogroup O21 in Vientiane, Laos – a case report. Annals of Clinical Microbiology and Antimicrobials, 2008, 7, 10. | 1.7 | 13 | | 85 | Impact of a package of diagnostic tools, clinical algorithm, and training and communication on outpatient acute fever case management in low- and middle-income countries: protocol for a randomized controlled trial. Trials, 2020, 21, 974. | 0.7 | 13 | | 86 | Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomedicine and Pharmacotherapy, 2021, 141, 111943. | 2.5 | 13 | | 87 | A rapid research needs appraisal methodology to identify evidence gaps to inform clinical research priorities in response to outbreaks—results from the Lassa fever pilot. BMC Medicine, 2019, 17, 107. | 2.3 | 10 | | 88 | Variation in excess all-cause mortality by age, sex, and province during the first wave of the COVID-19 pandemic in Italy. Scientific Reports, 2022, 12, 1077. | 1.6 | 10 | | 89 | Ophthalmic infections in children presenting to Angkor Hospital for Children, Siem Reap, Cambodia.
BMC Research Notes, 2014, 7, 784. | 0.6 | 9 | | 90 | Paediatric Chromobacterium violaceum in Cambodia: the first documented case. Tropical Doctor, 2012, 42, 178-179. | 0.2 | 8 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 91 | Mannose-binding lectin genotypes: lack of association with susceptibility to thoracic empyema. BMC Medical Genetics, 2010, 11, 5. | 2.1 | 7 | | 92 | Pharmacokinetics of TKM-130803Âin Sierra Leonean patients withÂEbola virus disease: Âplasma concentrations exceed target levels, withÂdrugÂaccumulation in the most severe patients. EBioMedicine, 2020, 52, 102601. | 2.7 | 7 | | 93 | Septic arthritis of the hip in a Cambodian child caused by multidrug-resistantSalmonella entericaserovar Typhi with intermediate susceptibility to ciprofloxacin treated with ceftriaxone and azithromycin. Paediatrics and International Child Health, 2014, 34, 227-229. | 0.3 | 4 | | 94 | New Approaches for the Treatment of Chagas Disease. Current Drug Targets, 2021, 22, 835-841. | 1.0 | 4 | | 95 | Exonic single nucleotide polymorphisms within TLR3 associated with infant responses to serogroup C meningococcal conjugate vaccine. Vaccine, 2014, 32, 3424-3430. | 1.7 | 3 | | 96 | Health in southeast Asia. Lancet, The, 2011, 377, 1571. | 6.3 | 1 | | 97 | Antimicrobial susceptibility of uropathogens isolated from Cambodian children. Paediatrics and International Child Health, 0, , 1-5. | 0.3 | 1 | | 98 | A child with recurrent mycobacterial infection. Journal of Infection, 2007, 55, e48. | 1.7 | 0 | | 99 | Surveillance of healthcare-associated infection at Angkor Hospital for Children, Siem Reap, Cambodia. International Journal of Infectious Diseases, 2012, 16, e375. | 1.5 | O | | 100 | Evaluation of a Typhoid IgM flow assay for the diagnosis of typhoid fever in Cambodian children using a Bayesian modelling approach assuming an imperfect gold standard. International Journal of Infectious Diseases, 2012, 16, e400-e401. | 1.5 | 0 | | 101 | Enteric fever in Cambodian children is dominated by multidrug resistant H58 Salmonella enterica serovar Typhi with decreased susceptibility to ciprofloxacin. International Journal of Infectious Diseases, 2012, 16, e427. | 1.5 | 0 | | 102 | A retrospective study of factors which determine a negative blood culture in Cambodian children diagnosed with enteric fever. Paediatrics and International Child Health, 2016, 36, 118-121. | 0.3 | 0 | | 103 | Antimicrobial susceptibility of uropathogens isolated from Cambodian children. Paediatrics and International Child Health, 2017, 37, 233-233. | 0.3 | 0 | | 104 | Microbiology Investigation Criteria for Reporting Objectively (MICRO): A framework for the reporting and interpretation of clinical microbiology data. Pathology, 2020, 52, S57. | 0.3 | 0 | | 105 | Pharmacokinetics of TKM-130803 in Ebola virus disease in Sierra Leonean subjects. Access
Microbiology, 2020, 2, . | 0.2 | 0 | | 106 | Global Antibiotic Consumption in Humans, 2000 to 2018: A Spatial Modelling Study. SSRN Electronic Journal, 0, , . | 0.4 | 0 | | 107 | Mapping Local Variation in Household Overcrowding Across Africa from 2000 to 2018: A Modelling Study. SSRN Electronic Journal, 0, , . | 0.4 | O |