
Paul S Brookes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6530108/publications.pdf Version: 2024-02-01

DALLI S RDOOKES

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology - Cell Physiology, 2004, 287, C817-C833.	4.6	2,110
4	lschaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515, 431-435.	27.8	1,989
5	BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell, 2013, 12, 329-341.	11.1	1,004
6	Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Medicine, 2013, 19, 753-759.	30.7	521
7	Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. Journal of Experimental Medicine, 2007, 204, 2089-2102.	8.5	492
8	Nitric oxide, mitochondria and neurological disease. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1410, 215-228.	1.0	415
9	Mitochondrial H+ leak and ROS generation: An odd couple. Free Radical Biology and Medicine, 2005, 38, 12-23.	2.9	389
10	The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochemical Journal, 2005, 392, 353-362.	3.7	321
11	Concentration-dependent Effects of Nitric Oxide on Mitochondrial Permeability Transition and Cytochrome cRelease. Journal of Biological Chemistry, 2000, 275, 20474-20479.	3.4	293
12	Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nature Biotechnology, 2010, 28, 249-255.	17.5	290
13	Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species 1,2 1Guest Editor: Harry Ischiropoulos 2This article is part of a series of reviews on "Reactive Nitrogen Species, Tyrosine Nitration and Cell Signaling.―The full list of papers may be found on the homepage of the iournal Free Radical Biology and Medicine. 2002. 33. 755-764.	2.9	272
14	SIRT1 is a redoxâ€sensitive deacetylase that is postâ€translationally modified by oxidants and carbonyl stress. FASEB Journal, 2010, 24, 3145-3159.	0.5	262
15	Direct evidence for S-nitrosation of mitochondrial complex I. Biochemical Journal, 2006, 394, 627-634.	3.7	254
16	Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy. Circulation Research, 2012, 111, 1222-1236.	4.5	226
17	The Proton Permeability of the Inner Membrane of Liver Mitochondria from Ectothermic and Endothermic Vertebrates and from Obese Rats: Correlations with Standard Metabolic Rate and Phospholipid Fatty Acid Composition. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology. 1998. 119. 325-334.	1.6	207
18	A mitochondria-targeted <i>S</i> -nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10764-10769.	7.1	205

#	Article	IF	CITATIONS
19	SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1602-H1609.	3.2	183
20	Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends in Biochemical Sciences, 2002, 27, 489-492.	7.5	178
21	Specific Modification of Mitochondrial Protein Thiols in Response to Oxidative Stress. Journal of Biological Chemistry, 2002, 277, 17048-17056.	3.4	173
22	Suppressors of Superoxide-H 2 O 2 Production at Site I Q of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 24, 582-592.	16.2	162
23	Mitochondria as a Target for the Cardioprotective Effects of Nitric Oxide in Ischemia–Reperfusion Injury. Antioxidants and Redox Signaling, 2008, 10, 579-600.	5.4	160
24	Oxygen Sensitivity of Mitochondrial Reactive Oxygen Species Generation Depends on Metabolic Conditions. Journal of Biological Chemistry, 2009, 284, 16236-16245.	3.4	159
25	High throughput two-dimensional blue-native electrophoresis: A tool for functional proteomics of mitochondria and signaling complexes. Proteomics, 2002, 2, 969.	2.2	158
26	Mitochondrial nitric oxide synthase. Mitochondrion, 2004, 3, 187-204.	3.4	152
27	Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Reports, 2018, 23, 2617-2628.	6.4	151
28	Mitochondrial dysfunction in cardiac ischemia–reperfusion injury: ROS from complex I, without inhibition. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 223-231.	3.8	142
29	The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood, 2012, 119, 3321-3329.	1.4	140
30	Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radical Biology and Medicine, 2002, 33, 1465-1474.	2.9	139
31	Cardioprotection by metabolic shut-down and gradual wake-up. Journal of Molecular and Cellular Cardiology, 2009, 46, 804-810.	1.9	138
32	Hypothesis: the mitochondrial NO• signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radical Biology and Medicine, 2002, 32, 370-374.	2.9	133
33	Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H101-H108.	3.2	133
34	Cardioprotection and mitochondrial S-nitrosation: Effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2007, 42, 812-825.	1.9	131
35	Identification of S-nitrosated mitochondrial proteins by <i>S</i> -nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochemical Journal, 2010, 430, 49-59.	3.7	130
36	Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. Journal of Biological Chemistry, 2016, 291, 20188-20197.	3.4	118

#	Article	IF	CITATIONS
37	Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochemical Journal, 2006, 395, 611-618.	3.7	117
38	Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovascular Research, 2009, 82, 333-340.	3.8	117
39	Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovascular Research, 2011, 89, 643-649.	3.8	114
40	Mechanisms of Cell Signaling by Nitric Oxide and Peroxynitrite: From Mitochondria to MAP Kinases. Antioxidants and Redox Signaling, 2001, 3, 215-229.	5.4	112
41	Peroxynitrite and Brain Mitochondria: Evidence for Increased Proton Leak. Journal of Neurochemistry, 1998, 70, 2195-2202.	3.9	110
42	Control of Mitochondrial Respiration by NO., Effects of Low Oxygen and Respiratory State. Journal of Biological Chemistry, 2003, 278, 31603-31609.	3.4	107
43	Cardiac metabolism as a driver and therapeutic target of myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 5937-5954.	3.6	101
44	The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 882-889.	1.0	96
45	SIRT1-mediated acute cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1506-H1512.	3.2	92
46	Cardioprotection by the mitochondrial unfolded protein response requires ATF5. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H472-H478.	3.2	90
47	UCPs — unlikely calcium porters. Nature Cell Biology, 2008, 10, 1235-1237.	10.3	88
48	The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Research in Cardiology, 2009, 104, 121-129.	5.9	88
49	Redox regulation of the mitochondrial KATP channel in cardioprotection. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1309-1315.	4.1	87
50	Mitochondrial function in response to cardiac ischemia-reperfusion after oral treatment with quercetin. Free Radical Biology and Medicine, 2002, 32, 1220-1228.	2.9	85
51	Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. American Journal of Physiology - Renal Physiology, 2014, 307, G632-G641.	3.4	85
52	The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Letters, 1999, 446, 261-263.	2.8	84
53	Moving Forwards by Blocking Back-Flow. Circulation Research, 2016, 118, 898-906.	4.5	83
54	effect of fatty acid composition. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 157-164.	2.6	75

#	Article	IF	CITATIONS
55	Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H39-H46.	3.2	71
56	An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicology and Applied Pharmacology, 2010, 249, 65-75.	2.8	71
57	Mechanisms of the interaction of nitroxyl with mitochondria. Biochemical Journal, 2004, 379, 359-366.	3.7	70
58	Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 598-611.	1.0	70
59	In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. Journal of Molecular and Cellular Cardiology, 2009, 46, 960-968.	1.9	69
60	Ischemic preconditioning: The role of mitochondria and aging. Experimental Gerontology, 2012, 47, 1-7.	2.8	69
61	Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1474-R1489.	1.8	66
62	Cyclophilin D Knock-Out Mice Show Enhanced Resistance to Osteoporosis and to Metabolic Changes Observed in Aging Bone. PLoS ONE, 2016, 11, e0155709.	2.5	63
63	SLO-2 Is Cytoprotective and Contributes to Mitochondrial Potassium Transport. PLoS ONE, 2011, 6, e28287.	2.5	62
64	Mitochondrial Dok-4 Recruits Src Kinase and Regulates NF-κB Activation in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 26383-26396.	3.4	61
65	NDUFS4: Creation of a mouse model mimicking a Complex I disorder. Mitochondrion, 2009, 9, 204-210.	3.4	60
66	Increased Sensitivity of Mitochondrial Respiration to Inhibition by Nitric Oxide in Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 2001, 33, 69-82.	1.9	56
67	Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide. PLoS ONE, 2009, 4, e8115.	2.5	53
68	Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. Journal of Molecular and Cellular Cardiology, 2018, 121, 155-162.	1.9	53
69	A Novel Mitochondrial K _{ATP} Channel Assay. Circulation Research, 2010, 106, 1190-1196.	4.5	52
70	Chronic alcohol consumption increases the sensitivity of rat liver mitochondrial respiration to inhibition by nitric oxide. Hepatology, 2003, 38, 141-147.	7.3	51
71	Mitochondrial Dysfunction and Permeability Transition in Osteosarcoma Cells Showing the Warburg Effect. Journal of Biological Chemistry, 2013, 288, 33303-33311.	3.4	51
72	The Triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic Acid and Its Derivatives Elicit Human Lymphoid Cell Apoptosis through a Novel Pathway Involving the Unregulated Mitochondrial Permeability Transition Pore. Cancer Research, 2007, 67, 1793-1802.	0.9	50

#	Article	IF	CITATIONS
73	Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. Journal of Molecular and Cellular Cardiology, 2015, 88, 64-72.	1.9	47
74	Nitroalkenes Confer Acute Cardioprotection via Adenine Nucleotide Translocase 1. Journal of Biological Chemistry, 2012, 287, 3573-3580.	3.4	45
75	Sustained Weight Loss After Roux-en-Y Gastric Bypass Is Characterized by Down Regulation of Endocannabinoids and Mitochondrial Function. Annals of Surgery, 2008, 247, 779-790.	4.2	44
76	Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biology, 2015, 5, 176-185.	9.0	44
77	Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: A novel synergistic therapeutic approach. Experimental Hematology, 2015, 43, 89-99.	0.4	44
78	The choline transporter Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial function. Nature Communications, 2020, 11, 3479.	12.8	43
79	Synthesis and Antineoplastic Evaluation of Mitochondrial Complexâ€II (Succinate Dehydrogenase) Inhibitors Derived from Atpeninâ€A5. ChemMedChem, 2017, 12, 1033-1044.	3.2	41
80	Cellular Compartmentation and the Redox/Nonredox Functions of NAD ⁺ . Antioxidants and Redox Signaling, 2019, 31, 623-642.	5.4	40
81	Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism. Journal of Biological Chemistry, 2013, 288, 35387-35395.	3.4	39
82	Fndc-1 contributes to paternal mitochondria elimination in C.Âelegans. Developmental Biology, 2019, 454, 15-20.	2.0	39
83	Kir6.2 is not the mitochondrial K _{ATP} channel but is required for cardioprotection by ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1439-H1445.	3.2	38
84	Bioenergetics in cardiac hypertrophy: mitochondrial respiration as a pathological target of NOÂ. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2261-H2269.	3.2	37
85	The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochemical Journal, 2017, 474, 2067-2094.	3.7	36
86	Redox signalling: from nitric oxide to oxidized lipids. Biochemical Society Symposia, 2004, 71, 107-120.	2.7	36
87	A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel. PeerJ, 2013, 1, e48.	2.0	34
88	The Mitochondrial Unfolded Protein Response Protects against Anoxia in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0159989.	2.5	33
89	Measurement of mitochondrial respiratory thresholds and the control of respiration by nitric oxide. Methods in Enzymology, 2002, 359, 305-319.	1.0	31
90	Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice. Pediatric Research, 2018, 83, 491-497.	2.3	31

#	Article	IF	CITATIONS
91	The C. elegans mitochondrial K+ATP channel: A potential target for preconditioning. Biochemical and Biophysical Research Communications, 2008, 376, 625-628.	2.1	28
92	A Cell-Based Phenotypic Assay to Identify Cardioprotective Agents. Circulation Research, 2012, 110, 948-957.	4.5	28
93	The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H29-H38.	3.2	27
94	The coordinated increased expression of biliverdin reductase and heme oxygenaseâ€2 promotes cardiomyocyte survival: a reductaseâ€based peptide counters βâ€adrenergic receptor ligandâ€mediated cardiac dysfunction. FASEB Journal, 2011, 25, 301-313.	0.5	24
95	Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury. Redox Biology, 2020, 37, 101733.	9.0	24
96	Reversible Inhibition of Cytochrome c Oxidase by Peroxynitrite Proceeds through Ascorbate-dependent Generation of Nitric Oxide. Journal of Biological Chemistry, 2003, 278, 27520-27524.	3.4	23
97	Cardiac metabolic effects of K _{Na} 1.2 channel deletion and evidence for its mitochondrial localization. FASEB Journal, 2018, 32, 6135-6149.	0.5	23
98	Mitochondrial biotransformation of ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids: A prodrug strategy for targeting cytoprotective antioxidants to mitochondria. Bioorganic and Medicinal Chemistry, 2010, 18, 1441-1448.	3.0	20
99	Mice Lacking TR4 Nuclear Receptor Develop Mitochondrial Myopathy with Deficiency in Complex I. Molecular Endocrinology, 2011, 25, 1301-1310.	3.7	19
100	Mitochondrial ATPâ€sensitive potassium channel activity and hypoxic preconditioning are independent of an inwardly rectifying potassium channel subunit in <i>Caenorhabditis elegans</i> . FEBS Letters, 2012, 586, 428-434.	2.8	19
101	Mitochondrially targeted nitroâ€linoleate: a new tool for the study of cardioprotection. British Journal of Pharmacology, 2014, 171, 2091-2098.	5.4	19
102	The mitochondrial complex II and ATP-sensitive potassium channel interaction: quantitation of the channel in heart mitochondria Acta Biochimica Polonica, 2010, 57, .	0.5	18
103	32 Mitochondrial proton leak and superoxide generation: an hypothesis. Biochemical Society Transactions, 1998, 26, S331-S331.	3.4	17
104	Cardiac <i>Slo2.1</i> Is Required for Volatile Anesthetic Stimulation of K+ Transport and Anesthetic Preconditioning. Anesthesiology, 2016, 124, 1065-1076.	2.5	17
105	Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochemical Journal, 2017, 474, 2829-2839.	3.7	17
106	Nucleus-mitochondria positive feedback loop formed by ERK5 S496 phosphorylation-mediated poly (ADP-ribose) polymerase activation provokes persistent pro-inflammatory senescent phenotype and accelerates coronary atherosclerosis after chemo-radiation. Redox Biology, 2021, 47, 102132.	9.0	17
107	Bicarbonate modulates oxidative and functional damage in ischemia–reperfusion. Free Radical Biology and Medicine, 2013, 55, 46-53.	2.9	16
108	Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight, 2021, 6, .	5.0	16

#	Article	IF	CITATIONS
109	Oxidation of 10-Formyltetrahydrofolate to 10-Formyldihydrofolate by Complex IV of Rat Mitochondria. Biochemistry, 2002, 41, 5633-5636.	2.5	14
110	Role of p90RSK in regulating the Crabtree effect: implications for cancer. Biochemical Society Transactions, 2013, 41, 124-126.	3.4	14
111	ALKBH7 mediates necrosis via rewiring of glyoxal metabolism. ELife, 2020, 9, .	6.0	14
112	Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose–phosphate pathways in embryonic heart. Journal of Biological Chemistry, 2018, 293, 6925-6941.	3.4	13
113	FNDC-1-mediated mitophagy and ATFS-1 coordinate to protect against hypoxia-reoxygenation. Autophagy, 2021, 17, 3389-3401.	9.1	13
114	Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation. Journal of the American Heart Association, 2022, 11, .	3.7	13
115	A shortcut to mitochondrial signaling and pathology: A commentary on "Nonenzymatic formation of succinate in mitochondria under oxidative stress― Free Radical Biology and Medicine, 2006, 41, 41-45.	2.9	12
116	Modulation of mitochondrial adenosine triphosphate-sensitive potassium channels and sodium-hydrogen exchange provide additive protection from severe ischemia-reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2003, 125, 863-871.	0.8	10
117	The RSK Inhibitor BIX02565 Limits Cardiac Ischemia/Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 177-186.	2.0	10
118	Cardiac Function is not Susceptible to Moderate Disassembly of Mitochondrial Respiratory Supercomplexes. International Journal of Molecular Sciences, 2020, 21, 1555.	4.1	10
119	Stimulation of glyceraldehyde-3-phosphate dehydrogenase by oxyhemoglobin. FEBS Letters, 1997, 416, 90-92.	2.8	9
120	Internet publicity of data problems in the bioscience literature correlates with enhanced corrective action. PeerJ, 2014, 2, e313.	2.0	9
121	Metabolism. Circulation, 2017, 136, 2158-2161.	1.6	9
122	The mitochondrial complex II and ATP-sensitive potassium channel interaction: quantitation of the channel in heart mitochondria. Acta Biochimica Polonica, 2010, 57, 431-4.	0.5	8
123	Intra-myocyte ion homeostasis during ischemia-reperfusion injury: effects of pharmacologic preconditioning and controlled reperfusion. Annals of Thoracic Surgery, 2003, 76, 1252-1258.	1.3	7
124	DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells. Free Radical Biology and Medicine, 2014, 75, 30-39.	2.9	7
125	Metabolomics of aging in primary fibroblasts from small and large breed dogs. GeroScience, 2021, 43, 1683-1696.	4.6	7
126	p90 ribosomal S6 kinase regulates activity of the renin–angiotensin system: A pathogenic mechanism for ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 272-275.	1.9	6

#	Article	IF	CITATIONS
127	Early life exposures shape the CD4+ T cell transcriptome, influencing proliferation, differentiation, and mitochondrial dynamics later in life. Scientific Reports, 2019, 9, 11489.	3.3	6
128	Discovery of Halogenated Benzothiadiazine Derivatives with Anticancer Activity**. ChemMedChem, 2021, 16, 1143-1162.	3.2	6
129	Methods for Measuring the Regulation of Respiration by Nitric Oxide. Methods in Cell Biology, 2007, 80, 395-416.	1.1	5
130	Measurement of Extracellular (Exofacial) Versus Intracellular Protein Thiols. Methods in Enzymology, 2010, 474, 149-164.	1.0	4
131	33 Peroxynitrite causes proton leak in brain mitochondria. Biochemical Society Transactions, 1998, 26, S332-S332.	3.4	3
132	Mitochondria and Nitric Oxide. , 2017, , 137-156.		3
133	Swapping mitochondria: a key to understanding susceptibility to neonatal chronic lung disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L737-L739.	2.9	3
134	Bcl-2 Inhibitor ABT-263 Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Blood, 2012, 120, 206-206.	1.4	3
135	SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia. Experimental Lung Research, 2017, 43, 229-239.	1.2	2
136	Modified Blue Native Gel Approach for Analysis of Respiratory Supercomplexes. Methods in Molecular Biology, 2021, 2276, 227-234.	0.9	2
137	The Rheumatoid Arthritis Drug Auranofin Has Significant in Vitro Activity in MCL and DLCL and Is Synergistic with a Glutathione Depleting Agent. Blood, 2012, 120, 1658-1658.	1.4	2
138	Modulation of Cell Surface Protein Free Thiols; A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide in Non-Hodgkin's Lymphoma Blood, 2009, 114, 3774-3774.	1.4	2
139	Reactive Oxygen Species (ROS) Levels Define Functional Heterogeneity in Human Leukemia Stem Cells and Represent a Critical Parameter for Therapeutic Targeting. Blood, 2011, 118, 639-639.	1.4	2
140	Chapter 10 The Interaction of Mitochondrial Membranes with Reactive Oxygen and Nitrogen Species. Current Topics in Membranes, 2008, , 211-242.	0.9	1
141	Stimulation of glyceraldehyde-3-phosphate dehydrogenase by oxyhemoglobin. Biochemical Society Transactions, 1998, 26, S246-S246.	3.4	0
142	Corrigendum to "p90 ribosomal S6 kinase regulates activity of the renin–angiotensin system: A pathogenic mechanism for ischemia–reperfusion injury―[J. Mol. Cell. Cardiol. 51 (2011) 272–275]. Journal of Molecular and Cellular Cardiology, 2012, 52, 292.	1.9	0
143	Amber alert: getting to the heart of succinate efflux in reperfusion injury. Cardiovascular Research, 2021, 117, 997-998.	3.8	0
144	The Triterpenoids 2-cyano-3,12-dioxooleana-1,9-dien-28-oic Acid (CDDO) and Their Imidazole (CDDO-Im) and Dinitrile Derivatives (DI-CDDO) Elicit Apoptosis through a Novel Mitochondrial Pathway Blood, 2005, 106, 2426-2426.	1.4	0

#	Article	IF	CITATIONS
145	Aging and Cardiac Ischemia—Mitochondria and Free Radical Considerations. , 2008, , 253-267.		0
146	Slo2 contributes to mitochondrial potassium flux and is required for anesthetic preconditioning. FASEB Journal, 2011, 25, 1097.15.	0.5	0