Bryan R Cullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6529580/publications.pdf

Version: 2024-02-01

139 26,216 74 133
papers citations h-index g-index

147 147 19355
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem–loop RNAs and their implications for functional cellular assays. Rna, 2021, 27, 12-26.	3.5	13
2	Mapping RNA Modifications Using Photo-Crosslinking-Assisted Modification Sequencing. Methods in Molecular Biology, 2021, 2298, 123-134.	0.9	3
3	Epitranscriptomic addition of m ⁶ A regulates HIV-1 RNA stability and alternative splicing. Genes and Development, 2021, 35, 992-1004.	5.9	31
4	Tax Induces the Recruitment of NF-κB to Unintegrated HIV-1 DNA To Rescue Viral Gene Expression and Replication. Journal of Virology, 2021, 95, e0028521.	3.4	11
5	Mapping of pseudouridine residues on cellular and viral transcripts using a novel antibody-based technique. Rna, 2021, 27, 1400-1411.	3.5	13
6	Epigenetic and epitranscriptomic regulation of viral replication. Nature Reviews Microbiology, 2020, 18, 559-570.	28.6	91
7	Reversal of Epigenetic Silencing Allows Robust HIV-1 Replication in the Absence of Integrase Function. MBio, 2020, 11 , .	4.1	19
8	Acetylation of Cytidine Residues Boosts HIV-1 Gene Expression by Increasing Viral RNA Stability. Cell Host and Microbe, 2020, 28, 306-312.e6.	11.0	89
9	Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Reports, 2020, 30, 2472-2480.e4.	6.4	28
10	Epitranscriptomic Addition of m5C to HIV-1 Transcripts Regulates Viral Gene Expression. Cell Host and Microbe, 2019, 26, 217-227.e6.	11.0	144
11	Extensive Epitranscriptomic Methylation of A and C Residues on Murine Leukemia Virus Transcripts Enhances Viral Gene Expression. MBio, 2019, 10, .	4.1	52
12	Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth <i>in vivo</i> . Future Virology, 2018, 13, 475-482.	1.8	33
13	Insights into the mechanisms underlying the inactivation of HIV-1 proviruses by CRISPR/Cas. Virology, 2018, 520, 116-126.	2.4	27
14	Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathogens, 2018, 14, e1006919.	4.7	118
15	Influenza A virus-derived siRNAs increase in the absence of NS1 yet fail to inhibit virus replication. Rna, 2018, 24, 1172-1182.	3.5	31
16	Induced Packaging of Cellular MicroRNAs into HIV-1 Virions Can Inhibit Infectivity. MBio, 2017, 8, .	4.1	13
17	Viral Epitranscriptomics. Journal of Virology, 2017, 91, .	3.4	66
18	RNA Interference in Mammals: The Virus Strikes Back. Immunity, 2017, 46, 970-972.	14.3	15

#	Article	IF	Citations
19	A lentiviral vector bearing a reverse intron demonstrates superior expression of both proteins and microRNAs. RNA Biology, 2017, 14, 1570-1579.	3.1	10
20	The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology, 2017, 512, 113-123.	2.4	24
21	Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. Cell Host and Microbe, 2017, 22, 377-386.e5.	11.0	163
22	Partial reconstitution of the RNAi response in human cells using <i>Drosophila</i> gene products. Rna, 2017, 23, 153-160.	3.5	6
23	Gene Editing: A New Tool for Viral Disease. Annual Review of Medicine, 2017, 68, 401-411.	12.2	25
24	Posttranscriptional m 6 A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. Cell Host and Microbe, 2016, 19, 675-685.	11.0	288
25	Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7249-56.	7.1	45
26	Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology, 2015, 476, 196-205.	2.4	202
27	Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology, 2015, 479-480, 213-220.	2.4	53
28	Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. Rna, 2015, 21, 1683-1689.	3.5	54
29	The virology–RNA biology connection. Rna, 2015, 21, 592-594.	3.5	3
30	Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antiviral Research, 2015, 123, 188-192.	4.1	75
31	Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice. Journal of Virology, 2015, 89, 11711-11714.	3.4	20
32	EBV Noncoding RNAs. Current Topics in Microbiology and Immunology, 2015, 391, 181-217.	1.1	71
33	Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic. Methods, 2015, 91, 82-86.	3.8	13
34	Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6945-54.	7.1	72
35	Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology, 2015, 16, 257.	8.8	239
36	EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival. PLoS Pathogens, 2015, 11, e1004979.	4.7	96

#	Article	IF	CITATIONS
37	Evolutionary Conservation of Primate Lymphocryptovirus MicroRNA Targets. Journal of Virology, 2014, 88, 1617-1635.	3.4	51
38	Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Research, 2014, 42, 4629-4639.	14.5	115
39	Search for MicroRNAs Expressed by Intracellular Bacterial Pathogens in Infected Mammalian Cells. PLoS ONE, 2014, 9, e106434.	2.5	59
40	Analysis of the mRNA Targetome of MicroRNAs Expressed by Marek's Disease Virus. MBio, 2014, 5, e01060-13.	4.1	32
41	Analysis of viral microRNA expression by elephant endotheliotropic herpesvirus 1. Virology, 2014, 454-455, 102-108.	2.4	3
42	Identification of Novel, Highly Expressed Retroviral MicroRNAs in Cells Infected by Bovine Foamy Virus. Journal of Virology, 2014, 88, 4679-4686.	3.4	56
43	Derivation and characterization of Dicer- and microRNA-deficient human cells. Rna, 2014, 20, 923-937.	3.5	94
44	A "microRNA-like―small RNA expressed by Dengue virus?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2359.	7.1	23
45	A Neuron-Specific Host MicroRNA Targets Herpes Simplex Virus-1 ICPO Expression and Promotes Latency. Cell Host and Microbe, 2014, 15, 446-456.	11.0	129
46	HIV-1 Packing to Leave. Cell, 2014, 159, 975-976.	28.9	0
46	HIV-1 Packing to Leave. Cell, 2014, 159, 975-976. Viruses and RNA Interference: Issues and Controversies. Journal of Virology, 2014, 88, 12934-12936.	28.9	0
47	Viruses and RNA Interference: Issues and Controversies. Journal of Virology, 2014, 88, 12934-12936. Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a	3.4	33
47	Viruses and RNA Interference: Issues and Controversies. Journal of Virology, 2014, 88, 12934-12936. Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease. Journal of Virology, 2014, 88, 11965-11972. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs.	3.4	232
48	Viruses and RNA Interference: Issues and Controversies. Journal of Virology, 2014, 88, 12934-12936. Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease. Journal of Virology, 2014, 88, 11965-11972. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs. Journal of Virology, 2014, 88, 8065-8076.	3.4 3.4 3.4	33 232 124
47 48 49 50	Viruses and RNA Interference: Issues and Controversies. Journal of Virology, 2014, 88, 12934-12936. Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease. Journal of Virology, 2014, 88, 11965-11972. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs. Journal of Virology, 2014, 88, 8065-8076. Interview with Bryan R Cullen. Future Virology, 2014, 9, 345-350. Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and	3.4 3.4 3.4	33 232 124 0
47 48 49 50	Viruses and RNA Interference: Issues and Controversies. Journal of Virology, 2014, 88, 12934-12936. Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease. Journal of Virology, 2014, 88, 11965-11972. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs. Journal of Virology, 2014, 88, 8065-8076. Interview with Bryan R Cullen. Future Virology, 2014, 9, 345-350. Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and especially VAII RNA. Virology, 2013, 447, 140-145. Is RNA Interference a Physiologically Relevant Innate Antiviral Immune Response in Mammals?. Cell	3.4 3.4 3.4 1.8	33 232 124 0

#	Article	IF	CITATIONS
55	MicroRNA target site identification by integrating sequence and binding information. Nature Methods, 2013, 10, 630-633.	19.0	56
56	In-Depth Analysis of the Interaction of HIV-1 with Cellular microRNA Biogenesis and Effector Mechanisms. MBio, 2013, 4, e000193.	4.1	134
57	MicroRNA- $17\hat{a}^{-1}/492$ plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO Journal, 2013, 32, 2377-2391.	7.8	123
58	How Do Viruses Avoid Inhibition by Endogenous Cellular MicroRNAs?. PLoS Pathogens, 2013, 9, e1003694.	4.7	43
59	Mutational Inactivation of Herpes Simplex Virus 1 MicroRNAs Identifies Viral mRNA Targets and Reveals Phenotypic Effects in Culture. Journal of Virology, 2013, 87, 6589-6603.	3.4	91
60	A Cluster of Virus-Encoded MicroRNAs Accelerates Acute Systemic Epstein-Barr Virus Infection but Does Not Significantly Enhance Virus-Induced Oncogenesis <i>In Vivo</i> . Journal of Virology, 2013, 87, 5437-5446.	3.4	44
61	The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines. PLoS Pathogens, 2012, 8, e1002484.	4.7	321
62	MicroRNA expression by an oncogenic retrovirus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2695-2696.	7.1	10
63	Herpesvirus microRNAs: phenotypes and functions. Current Opinion in Virology, 2011, 1, 211-215.	5.4	51
64	Viral MicroRNA Targetome of KSHV-Infected Primary Effusion Lymphoma Cell Lines. Cell Host and Microbe, 2011, 10, 515-526.	11.0	297
65	Viruses and microRNAs: RISCy interactions with serious consequences. Genes and Development, 2011, 25, 1881-1894.	5.9	180
66	The Members of an Epstein-Barr Virus MicroRNA Cluster Cooperate To Transform B Lymphocytes. Journal of Virology, 2011, 85, 9801-9810.	3.4	91
67	A Viral microRNA Cluster Strongly Potentiates the Transforming Properties of a Human Herpesvirus. PLoS Pathogens, 2011, 7, e1001294.	4.7	132
68	Analysis of rhesus rhadinovirus microRNAs expressed in virus-induced tumors from infected rhesus macaques. Virology, 2010, 405, 592-599.	2.4	39
69	Virally Induced Cellular MicroRNA miR-155 Plays a Key Role in B-Cell Immortalization by Epstein-Barr Virus. Journal of Virology, 2010, 84, 11670-11678.	3.4	182
70	In-Depth Analysis of Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Expression Provides Insights into the Mammalian MicroRNA-Processing Machinery. Journal of Virology, 2010, 84, 695-703.	3.4	130
71	A Human Herpesvirus MicroRNA Inhibits p21 Expression and Attenuates p21-Mediated Cell Cycle Arrest. Journal of Virology, 2010, 84, 5229-5237.	3.4	157
72	Identification of Viral MicroRNAs Expressed in Human Sacral Ganglia Latently Infected with Herpes Simplex Virus 2. Journal of Virology, 2010, 84, 1189-1192.	3.4	71

#	Article	IF	CITATIONS
73	Five Questions about Viruses and MicroRNAs. PLoS Pathogens, 2010, 6, e1000787.	4.7	86
74	Influenza A Virus Expresses High Levels of an Unusual Class of Small Viral Leader RNAs in Infected Cells. MBio, $2010,1,.$	4.1	80
75	Viruses, microRNAs, and Host Interactions. Annual Review of Microbiology, 2010, 64, 123-141.	7.3	634
76	A Mammalian Herpesvirus Uses Noncanonical Expression and Processing Mechanisms to Generate Viral MicroRNAs. Molecular Cell, 2010, 37, 135-142.	9.7	194
77	The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes and Development, 2009, 23, 1151-1164.	5.9	340
78	Viral and cellular messenger RNA targets of viral microRNAs. Nature, 2009, 457, 421-425.	27.8	252
79	Viral RNAs: Lessons from the Enemy. Cell, 2009, 136, 592-597.	28.9	38
80	Analysis of Human Alphaherpesvirus MicroRNA Expression in Latently Infected Human Trigeminal Ganglia. Journal of Virology, 2009, 83, 10677-10683.	3.4	159
81	Viruses, microRNAs and RNA Interference. FASEB Journal, 2009, 23, 194.3.	0.5	0
82	MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature, 2008, 454, 780-783.	27.8	604
83	Viral and Cellular MicroRNAs as Determinants of Viral Pathogenesis and Immunity. Cell Host and Microbe, 2008, 3, 375-387.	11.0	378
84	Analysis of the Interaction of Primate Retroviruses with the Human RNA Interference Machinery. Journal of Virology, 2007, 81, 12218-12226.	3.4	161
85	Protocols for Expression and Functional Analysis of Viral MicroRNAs. Methods in Enzymology, 2007, 427, 229-243.	1.0	6
86	Outwitted by Viral RNAs. Science, 2007, 317, 329-330.	12.6	13
87	A viral microRNA functions as an orthologue of cellular miR-155. Nature, 2007, 450, 1096-1099.	27.8	541
88	Cloning and analysis of microRNAs encoded by the primate \hat{I}^3 -herpesvirus rhesus monkey rhadinovirus. Virology, 2007, 364, 21-27.	2.4	64
89	Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8780-8785.	7.1	343
90	Viruses and microRNAs. Nature Genetics, 2006, 38, S25-S30.	21.4	365

#	Article	IF	Citations
91	Is RNA interference involved in intrinsic antiviral immunity in mammals?. Nature Immunology, 2006, 7, 563-567.	14.5	153
92	Enhancing and confirming the specificity of RNAi experiments. Nature Methods, 2006, 3, 677-681.	19.0	154
93	Induction of stable RNA interference in mammalian cells. Gene Therapy, 2006, 13, 503-508.	4.5	65
94	Epstein–Barr Virus MicroRNAs Are Evolutionarily Conserved and Differentially Expressed. PLoS Pathogens, 2006, 2, e23.	4.7	486
95	A Novel Assay for Viral MicroRNA Function Identifies a Single Nucleotide Polymorphism That Affects Drosha Processing. Journal of Virology, 2006, 80, 5321-5326.	3.4	135
96	Human Papillomavirus Genotype 31 Does Not Express Detectable MicroRNA Levels during Latent or Productive Virus Replication. Journal of Virology, 2006, 80, 10890-10893.	3.4	65
97	Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 2006, 80, 1067-1076.	3.4	253
98	APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Research, 2006, 34, 89-95.	14.5	252
99	Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO Journal, 2005, 24, 138-148.	7.8	505
100	Inhibition of a Yeast LTR Retrotransposon by Human APOBEC3 Cytidine Deaminases. Current Biology, 2005, 15, 661-666.	3.9	139
101	Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology, 2005, 339, 281-288.	2.4	213
102	Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5570-5575.	7.1	548
103	Does RNA interference have a future as a treatment for HIV-1 induced disease?. AIDS Reviews, 2005, 7, 22-5.	1.0	14
104	Assaying Nuclear Messenger RNA Export in Human Cells. , 2004, 257, 085-092.		10
105	From The Cover: A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 , 3770 - 3774 .	7.1	292
106	A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO Journal, 2004, 23, 2451-2458.	7.8	432
107	Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 2004, 10, 1957-1966.	3.5	1,509
108	Adenovirus VA1 Noncoding RNA Can Inhibit Small Interfering RNA and MicroRNA Biogenesis. Journal of Virology, 2004, 78, 12868-12876.	3.4	333

#	Article	IF	CITATIONS
109	Derivation and function of small interfering RNAs and microRNAs. Virus Research, 2004, 102, 3-9.	2.2	79
110	Transcription and Processing of Human microRNA Precursors. Molecular Cell, 2004, 16, 861-865.	9.7	682
111	Nuclear mRNA export: insights from virology. Trends in Biochemical Sciences, 2003, 28, 419-424.	7.5	256
112	Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 2003, 17, 3011-3016.	5. 9	2,377
113	Nuclear RNA export. Journal of Cell Science, 2003, 116, 587-597.	2.0	191
114	Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. Rna, 2003, 9, 618-630.	3.5	145
115	HIV-1 Vif: Counteracting Innate Antiretroviral Defenses. Molecular Therapy, 2003, 8, 525-527.	8.2	17
116	MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9779-9784.	7.1	813
117	Inhibition of Human Immunodeficiency Virus Type 1 Replication in Primary Macrophages by Using Tat- or CCR5-Specific Small Interfering RNAs Expressed from a Lentivirus Vector. Journal of Virology, 2003, 77, 11964-11972.	3.4	140
118	Both Natural and Designed Micro RNAs Can Inhibit the Expression of Cognate mRNAs When Expressed in Human Cells. Molecular Cell, 2002, 9, 1327-1333.	9.7	786
119	RNA interference: antiviral defense and genetic tool. Nature Immunology, 2002, 3, 597-599.	14.5	116
120	A new entry route for HIV. Nature Medicine, 2001, 7, 20-21.	30.7	9
121	Molecular Basis for Cell Tropism of CXCR4-Dependent Human Immunodeficiency Virus Type 1 Isolates. Journal of Virology, 2001, 75, 6776-6785.	3.4	86
122	The human endogenous retrovirus K Rev response element coincides with a predicted RNA folding region. Rna, 2000, 6, 1551-1564.	3.5	25
123	Structural and functional analysis of the avian leukemia virus constitutive transport element. Rna, 1999, 5, 1645-1655.	3.5	34
124	HIV-1 Nef protein: An invitation to a kill. Nature Medicine, 1999, 5, 985-986.	30.7	11
125	New trick from an old foe. Nature, 1996, 379, 208-209.	27.8	5
126	Chaperoning a pathogen. Nature, 1994, 372, 319-320.	27.8	17

#	Article	IF	CITATIONS
127	Regulation of HIVâ€1 gene expression. FASEB Journal, 1991, 5, 2361-2368.	0.5	247
128	The positive effect of the negative factor. Nature, 1991, 351, 698-699.	27.8	12
129	Does the human immunodeficiency virus tat trans-activator contain a discrete activation domain?. Virology, 1990, 178, 560-567.	2.4	48
130	Functions of the auxiliary gene products of the human immunodeficiency virus type 1. Virology, 1990, 178, 1-5.	2.4	125
131	The HIV-1 Tat protein: An RNA sequence-specific processivity factor?. Cell, 1990, 63, 655-657.	28.9	264
132	The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature, 1989, 338, 254-257.	27.8	1,350
133	Functional dissection of the HIV-1 Rev trans-activatorâ€"Derivation of a trans-dominant repressor of Rev function. Cell, 1989, 58, 205-214.	28.9	831
134	Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes. Nature, 1988, 335, 181-183.	27.8	448
135	Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein. Nature, 1988, 335, 738-740.	27.8	255
136	[71] Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods in Enzymology, 1987, 152, 684-704.	1.0	896
137	Transcriptional interference in avian retroviruses—implications for the promoter insertion model of leukaemogenesis. Nature, 1984, 307, 241-245.	27.8	411
138	Epitranscriptomic Addition of m $\langle \sup 5 \langle \sup \rangle C$ to HIV-1 Transcripts Regulates Viral Gene Expression. SSRN Electronic Journal, $0,$	0.4	1
139	Epitranscriptomic Regulation of HIV-1 Gene Expression by m ⁵ C and the Novel m ⁵ C Reader MBD2. SSRN Electronic Journal, 0, , .	0.4	1