

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6528308/publications.pdf Version: 2024-02-01

ייא ים

#	Article	IF	CITATIONS
1	Anemoside B4 inhibits enterovirus 71 propagation in mice through upregulating 14-3-3 expression and type I interferon responses. Acta Pharmacologica Sinica, 2022, 43, 977-991.	6.1	13
2	CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nature Biomedical Engineering, 2022, 6, 830-841.	22.5	25
3	A qPCR-Based Method for Quantification of RCA Contaminants in Oncolytic Adenovirus Products. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	2
4	A qPCR-Based Method for Quantification of Replication Competent Adenovirus (RCA) in Conditionally Replicating Oncolytic Adenoviruses. Methods in Molecular Biology, 2022, , 249-258.	0.9	1
5	Intratumoral administration of pro-inflammatory allogeneic dendritic cells improved the anti-tumor response of systemic anti-CTLA-4 treatment via unleashing a T cell-dependent response. Oncolmmunology, 2022, 11, .	4.6	5
6	<i>In Situ</i> Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy. Nano Letters, 2021, 21, 2224-2231.	9.1	116
7	IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma. Molecular Therapy - Oncolytics, 2021, 21, 37-46.	4.4	14
8	Concurrent expression of HP-NAP enhances antitumor efficacy of oncolytic vaccinia virus but not for Semliki Forest virus. Molecular Therapy - Oncolytics, 2021, 21, 356-366.	4.4	7
9	Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS Nano, 2021, 15, 14347-14359.	14.6	73
10	Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death and Disease, 2020, 11, 48.	6.3	103
11	Abstract B110: Proinflammatory allogeneic dendritic cells promote activation of bystander immune cells and indirectly license antigen-specific T-cells. , 2019, , .		0
12	Abstract B175: Semliki Forest virus-mediated oncolytic immunotherapy in mouse GL261 glioblastoma model. , 2019, , .		0
13	Abstract A041: Hypoxia-responsive CAR T-cells. , 2019, , .		1
14	Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3808-E3816.	7.1	35
15	Cancer vaccine based on a combination of an infection-enhanced adenoviral vector and pro-inflammatory allogeneic DCs leads to sustained antigen-specific immune responses in three melanoma models. OncoImmunology, 2018, 7, e1397250.	4.6	19
16	Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncolmmunology, 2018, 7, e1395126.	4.6	24
17	Antischistosomal Properties of Hederacolchiside A1 Isolated from Pulsatilla chinensis. Molecules, 2018, 23, 1431.	3.8	20
18	CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. Journal of Clinical Investigation, 2018, 128, 3280-3297.	8.2	100

Dı Yu

#	Article	IF	CITATIONS
19	Inhibition of Heparanase in Pediatric Brain Tumor Cells Attenuates their Proliferation, Invasive Capacity, and <i>In Vivo</i> Tumor Growth. Molecular Cancer Therapeutics, 2017, 16, 1705-1716.	4.1	32
20	Insertion of the Type-I IFN Decoy Receptor B18R in a miRNA-Tagged Semliki Forest Virus Improves Oncolytic Capacity but Results in Neurotoxicity. Molecular Therapy - Oncolytics, 2017, 7, 67-75.	4.4	6
21	Preclinical Evaluation of AdVince, an Oncolytic Adenovirus Adapted for Treatment of Liver Metastases from Neuroendocrine Cancer. Neuroendocrinology, 2017, 105, 54-66.	2.5	24
22	Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clinical Cancer Research, 2017, 23, 1519-1530.	7.0	43
23	Safe engineering of <scp>CAR</scp> T cells for adoptive cell therapy of cancer using longâ€ŧerm episomal geneÂtransfer. EMBO Molecular Medicine, 2016, 8, 702-711.	6.9	56
24	Prospects to improve chimeric antigen receptor T-cell therapy for solid tumors. Immunotherapy, 2016, 8, 1355-1361.	2.0	15
25	HAdV-2-suppressed growth of SV40 T antigen-transformed mouse mammary epithelial cell-induced tumours in SCID mice. Virology, 2016, 489, 44-50.	2.4	0
26	Abstract A171: Long-term episomal gene transfer for safe engineering of T cells for adoptive cell therapy of cancer. , 2016, , .		0
27	Abstract A172: Allogeneic dendritic cells (AlloDCs) transduced with an infection-enhanced adenovirus as adjuvant for cancer immunotherapy. , 2016, , .		0
28	Abstract 2311: Adenovirus-transduced allogeneic dendritic cells for cancer immunotherapy. , 2016, , .		0
29	Chondroitin Sulfateâ€Coated DNAâ€Nanoplexes Enhance Transfection Efficiency by Controlling Plasmid Release from Endosomes: A New Insight into Modulating Nonviral Gene Transfection. Advanced Functional Materials, 2015, 25, 3907-3915.	14.9	43
30	Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas. Science Signaling, 2015, 8, ra125.	3.6	52
31	A Hexon and Fiber-modified Adenovirus Expressing CD40L Improves the Antigen Presentation Capacity of Dendritic Cells. Journal of Immunotherapy, 2014, 37, 155-162.	2.4	3
32	Vector-EncodedHelicobacter pyloriNeutrophil-Activating Protein Promotes Maturation of Dendritic Cells with Th1 Polarization and Improved Migration. Journal of Immunology, 2014, 193, 2287-2296.	0.8	32
33	Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14001.	4.1	27
34	Tat-PTD-Modified Oncolytic Adenovirus Driven by the SCG3 Promoter and ASH1 Enhancer for Neuroblastoma Therapy. Human Gene Therapy, 2013, 24, 766-775.	2.7	8
35	An Infection-enhanced Oncolytic Adenovirus Secreting H. pylori Neutrophil-activating Protein with Therapeutic Effects on Neuroendocrine Tumors. Molecular Therapy, 2013, 21, 2008-2018.	8.2	29
36	Adenovirus Serotype 5 Vectors with Tat-PTD Modified Hexon and Serotype 35 Fiber Show Greatly Enhanced Transduction Capacity of Primary Cell Cultures. PLoS ONE, 2013, 8, e54952.	2.5	25

Dı Yu

#	Article	IF	CITATIONS
37	Oncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells. Gene Therapy, 2011, 18, 1052-1062.	4.5	27
38	Adenovirus with Hexon Tat-Protein Transduction Domain Modification Exhibits Increased Therapeutic Effect in Experimental Neuroblastoma and Neuroendocrine Tumors. Journal of Virology, 2011, 85, 13114-13123.	3.4	34
39	Double-Detargeted Oncolytic Adenovirus Shows Replication Arrest in Liver Cells and Retains Neuroendocrine Cell Killing Ability. PLoS ONE, 2010, 5, e8916.	2.5	43