Xiangbin Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6527497/publications.pdf

Version: 2024-02-01

		279798	223800
52	2,217	23	46
papers	citations	h-index	g-index
53	53	53	2924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Applied Catalysis B: Environmental, 2022, 301, 120826.	20.2	51
2	Boosting oxygen-reduction catalysis over mononuclear CuN2+2 moiety for rechargeable Zn-air battery. Chemical Engineering Journal, 2022, 430, 133105.	12.7	12
3	Antisintering Pd ₁ Catalyst for Propane Direct Dehydrogenation with In Situ Active Sites Regeneration Ability. ACS Catalysis, 2022, 12, 2244-2252.	11.2	23
4	Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production. Journal of the American Chemical Society, 2022, 144, 3535-3542.	13.7	72
5	A Magnetically Separable Pd Singleâ€Atom Catalyst for Efficient Selective Hydrogenation of Phenylacetylene. Advanced Materials, 2022, 34, e2110455.	21.0	44
6	Bridging the gap between atomically thin semiconductors and metal leads. Nature Communications, 2022, 13, 1777.	12.8	17
7	Insight into the Activity of Atomically Dispersed Cu Catalysts for Semihydrogenation of Acetylene: Impact of Coordination Environments. ACS Catalysis, 2022, 12, 48-57.	11.2	23
8	Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Research, 2022, 15, 10029-10036.	10.4	7
9	Layer-dependent interface reconstruction and strain modulation in twisted WSe ₂ . Nanoscale, 2021, 13, 13624-13630.	5.6	8
10	Rewritable High-Mobility Electrons in Oxide Heterostructure of Layered Perovskite/Perovskite. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7812-7821.	8.0	6
11	Strain engineering of epitaxial oxide heterostructures beyond substrate limitations. Matter, 2021, 4, 1323-1334.	10.0	21
12	Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nature Communications, 2021, 12, 2664.	12.8	111
13	Phase management in single-crystalline vanadium dioxide beams. Nature Communications, 2021, 12, 4214.	12.8	31
14	In-Situ Transmission Electron Microscopy: Electron Beam Effects in Carbon-based Nanomaterials. Microscopy and Microanalysis, 2021, 27, 2110-2113.	0.4	2
15	Cooperative Sites in Fully Exposed Pd Clusters for Low-Temperature Direct Dehydrogenation Reaction. ACS Catalysis, 2021, 11, 11469-11477.	11.2	51
16	In situ atomic-scale studies of thermal stability and surface reconstruction of ZnO nanowires based Pd nanocatalysts. Materials and Design, 2021, 209, 109947.	7.0	6
17	Towards a library of atomically dispersed catalysts. Materials and Design, 2021, 210, 110080.	7.0	6
18	Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts. Nature Communications, 2021, 12, 6194.	12.8	51

#	ARTICLE	IF	CITATIONS
19	$Electronic \ and \ transport \ properties \ in \ Ruddles den-Popper \ neodymium \ nickelates < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">Ndmathvariant="normal">O3n+$	row> <mm l:mo><mn< td=""><td>ıl:mi>nıl:mn>1</td></mn<></mm 	ıl:mi>nıl:mn>1

#	Article	IF	CITATIONS
37	Controllable defect driven symmetry change and domain structure evolution in BiFeO ₃ with enhanced tetragonality. Nanoscale, 2019, 11, 8110-8118.	5.6	22
38	Intrinsic valley Hall transport in atomically thin MoS2. Nature Communications, 2019, 10, 611.	12.8	77
39	Atomic-scale identification of crystalline GaON nanophase for enhanced GaN MIS-FET channel. Applied Physics Letters, 2019, 114, .	3.3	16
40	Twin Defect Derived Growth of Atomically Thin MoS ₂ Dendrites. ACS Nano, 2018, 12, 635-643.	14.6	92
41	Nanodiamondâ€Coreâ€Reinforced, Grapheneâ€Shellâ€Immobilized Platinum Nanoparticles as a Highly Active Catalyst for the Lowâ€Temperature Dehydrogenation of <i>n</i>	3.7	15
42	Gate-tunable strong-weak localization transition in few-layer black phosphorus. Nanotechnology, 2018, 29, 035204.	2.6	10
43	$Suppressed\ Hole-Induced\ Degradation\ in\ E-mode\ GaN\ MIS-FETs\ with\ Crystalline $$ \ext{GaO}_{mathrm{x}}\ mathrm{x}} = 1-mathrm{x} < 1-mathrm{x}.$		4
44	Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene. Journal of the American Chemical Society, 2018, 140, 13142-13146.	13.7	342
45	Fluctuation-induced tunneling conduction in iodine-doped bilayer graphene. Journal of Applied Physics, 2018, 123, 244302.	2.5	2
46	Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. Nature Communications, 2018, 9, 2965.	12.8	34
47	Electron Energy‣oss Spectroscopy of Spatial Nonlocality and Quantum Tunneling Effects in the Bright and Dark Plasmon Modes of Gold Nanosphere Dimers. Advanced Quantum Technologies, 2018, 1, 1800016.	3.9	13
48	Normally-Off LPCVD-SiN <italic> _x </italic> /GaN MIS-FET With Crystalline Oxidation Interlayer. IEEE Electron Device Letters, 2017, 38, 929-932.	3.9	67
49	Reversible bidirectional bending of hydrogel-based bilayer actuators. Journal of Materials Chemistry B, 2017, 5, 2804-2812.	5.8	107
50	Isolation and Characterization of Few-Layer Manganese Thiophosphite. ACS Nano, 2017, 11, 11330-11336.	14.6	98
51	Axial Modulation of Metal–Insulator Phase Transition of VO ₂ Nanowires by Graded Doping Engineering for Optically Readable Thermometers. Journal of Physical Chemistry C, 2017, 121, 24877-24885.	3.1	31
52	Coherent Heterostructure Mesh Grown by Gap-Filling Epitaxial Chemical Vapor Deposition. Chemistry of Materials, 0, , .	6.7	2