
Yan-Xia Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6527032/publications.pdf Version: 2024-02-01

YAN-XIA HANC

#	Article	IF	CITATIONS
1	Boosting the ORR performance of Fe-N/C catalyst via increasing the density and modifying the electronic structure of Fe-NX active sites. Electrochimica Acta, 2022, 403, 139604.	5.2	24
2	Electrochemical and in situ FTIR spectroscopic studies of gentian violet as a novel leveler in through-holes metallization for printed circuit board applications. Electrochimica Acta, 2022, 410, 140018.	5.2	19
3	Experimental and DFT studies of oxygen reduction reaction promoted by binary site Fe/Co–N–C catalyst in acid. Journal of Electroanalytical Chemistry, 2022, 914, 116322.	3.8	4
4	Tuning atomic Pt site surface on PtAu alloy towardÂelectro-oxidation of formic acid. Materials Today Energy, 2022, 27, 101028.	4.7	14
5	Seizing gaseous Fe ²⁺ to densify O ₂ -accessible Fe–N ₄ sites for high-performance proton exchange membrane fuel cells. Energy and Environmental Science, 2022, 15, 3033-3040.	30.8	49
6	MOF-derived single site catalysts with Electron-Rich Fe-N4 sites for efficient elimination of trichloroacetamide DBP. Chemical Engineering Journal, 2022, 446, 137060.	12.7	11
7	Revealing the optimal configuration for synergy effect of metal nanoparticles and MN4 sites for oxygen reduction reaction. Nano Energy, 2022, 100, 107440.	16.0	8
8	Nano-geometric deformation and synergistic Co nanoparticles—Co-N ₄ composite sites for proton exchange membrane fuel cells. Energy and Environmental Science, 2021, 14, 5958-5967.	30.8	86
9	Engineering the Nearâ€Surface of PtRu ₃ Nanoparticles to Improve Hydrogen Oxidation Activity in Alkaline Electrolyte. Small, 2021, 17, e2006698.	10.0	41
10	Stepwise pyrolysis treatment as an efficient strategy to enhance the stability performance of Fe-NX/C electrocatalyst towards oxygen reduction reaction and proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2021, 295, 120311.	20.2	76
11	Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Applied Catalysis B: Environmental, 2020, 263, 118345.	20.2	129
12	Self-Template Synthesis of Atomically Dispersed Fe/N-Codoped Nanocarbon as Efficient Bifunctional Alkaline Oxygen Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 625-634.	5.1	19
13	Construction of Highly Active Metalâ€Containing Nanoparticles and FeCoâ€N ₄ Composite Sites for the Acidic Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 22160-22163.	2.0	43
14	Construction of Highly Active Metal ontaining Nanoparticles and FeCoâ€N ₄ Composite Sites for the Acidic Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 21976-21979.	13.8	157
15	Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 22397-22402.	13.8	125
16	Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 22583-22588.	2.0	11
17	Random alloy and intermetallic nanocatalysts in fuel cell reactions. Nanoscale, 2020, 12, 19557-19581.	5.6	27
18	Facile Chemical Analysis of Live Cell Activities by Fourier Transform Infrared (FTIR) Spectroscopy in the Transmission Mode. Vibrational Spectroscopy, 2020, 109, 103068.	2.2	4

YAN-XIA JIANG

#	Article	IF	CITATIONS
19	Facile Preparation of Carbon Shells-Coated O-Doped Molybdenum Carbide Nanoparticles as High Selective Electrocatalysts for Nitrogen Reduction Reaction under Ambient Conditions. ACS Applied Materials & Interfaces, 2019, 11, 31869-31877.	8.0	78
20	Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media?. Nano Energy, 2019, 62, 601-609.	16.0	68
21	The Quasiâ€Ptâ€Allotrope Catalyst: Hollow PtCo@singleâ€Atom Pt ₁ on Nitrogenâ€Doped Carbon toward Superior Oxygen Reduction. Advanced Functional Materials, 2019, 29, 1807340.	14.9	97
22	Ordered platinum–bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 5214-5220.	10.3	48
23	Molybdenum Carbide Prepared by a Salt Sealing Approach as an Electrocatalyst for Enhanced Hydrogen Evolution Reaction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 523-530.	4.9	6
24	Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83.	25.5	87
25	Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry, 2018, 119, 196-202.	4.6	61
26	High selectivity PtRh/RGO catalysts for ethanol electro-oxidation at low potentials: Enhancing the efficiency of CO2 from alcoholic groups. Electrochimica Acta, 2018, 292, 208-216.	5.2	44
27	Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects. Environmental Pollution, 2018, 241, 265-271.	7.5	34
28	Engineering phase and surface composition of Pt 3 Co nanocatalysts: A strategy for enhancing CO tolerance. Nano Energy, 2017, 34, 224-232.	16.0	84
29	Nanocrystal Catalysts of High-Energy Surface and Activity. Studies in Surface Science and Catalysis, 2017, 177, 439-475.	1.5	2
30	Platinum–Cobalt Bimetallic Nanoparticles with Pt Skin for Electro-Oxidation of Ethanol. ACS Catalysis, 2017, 7, 892-895.	11.2	89
31	Interaction between in vivo bioluminescence and extracellular electron transfer in Shewanella woodyi via charge and discharge. Physical Chemistry Chemical Physics, 2017, 19, 1746-1750.	2.8	19
32	Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage. Accounts of Chemical Research, 2016, 49, 2569-2577.	15.6	131
33	In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy, 2016, 29, 414-427.	16.0	108
34	A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium. Journal of Power Sources, 2016, 311, 81-90.	7.8	45
35	One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chemical Communications, 2016, 52, 4493-4496.	4.1	25
36	Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy, 2016, 19, 198-209.	16.0	94

YAN-XIA JIANG

#	Article	IF	CITATIONS
37	CeO2 nanorods with high energy surfaces as electrocatalytical supports for methanol electrooxidation. Electrochimica Acta, 2015, 182, 1078-1084.	5.2	21
38	PtBi intermetallic and PtBi intermetallic with the Bi-rich surface supported on porous graphitic carbon towards HCOOH electro-oxidation. Electrochimica Acta, 2015, 162, 254-262.	5.2	68
39	Electrochemical in situ FTIR spectroscopy studies directly extracellular electron transfer of Shewanella oneidensis MR-1. Electrochimica Acta, 2015, 170, 131-139.	5.2	27
40	TEM study of fivefold twined gold nanocrystal formation mechanism. Materials Letters, 2014, 116, 299-303.	2.6	19
41	High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Physical Chemistry Chemical Physics, 2014, 16, 13662.	2.8	85
42	Shape Evolution of Platinum Nanocrystals by Electrochemistry. Electrochimica Acta, 2014, 140, 345-351.	5.2	16
43	Electrochemically shape-controlled synthesis of trapezohedral platinum nanocrystals with high electrocatalytic activity. Chemical Communications, 2012, 48, 9531.	4.1	95
44	High activity of PtBi intermetallics supported on mesoporous carbon towards HCOOH electro-oxidation. Electrochemistry Communications, 2012, 25, 105-108.	4.7	41
45	Preparation of Pt nanoparticles supported on ordered mesoporous carbon FDU-15 for electrocatalytic oxidation of CO and methanol. Electrochimica Acta, 2012, 67, 127-132.	5.2	29
46	Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta, 2011, 56, 9549-9555.	5.2	329
47	Cyclic voltammetric and <italic>in situ</italic> FTIR spectroscopic studies of redox of nitric oxide and carbon monoxide coadlayers on Pt electrode. Scientia Sinica Chimica, 2011, 41, 1482-1488.	0.4	0
48	Self-Assembled CoPt Nanoparticles Monolayer Film and Its IR Optical Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 8265-8270.	0.9	1
49	Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Graphene TAB″onic Liquid Nanocomposite Film. Electroanalysis, 2010, 22, 2297-2302.	2.9	16
50	In situ FTIR spectroscopic studies of (bi)sulfate adsorption on electrodes of Pt nanoparticles supported on different substrates. Electrochimica Acta, 2010, 55, 2065-2072.	5.2	22
51	Electrocatalytic reduction of nitric oxide on Pt nanocrystals of different shape in sulfuric acid solutions. Electrochimica Acta, 2010, 55, 8273-8279.	5.2	21
52	Synthesis and Durability of Highly Dispersed Platinum Nanoparticles Supported on Ordered Mesoporous Carbon and Their Electrocatalytic Properties for Ethanol Oxidation. Journal of Physical Chemistry C, 2010, 114, 19055-19061.	3.1	22
53	Tuning the Shape and Catalytic Activity of Fe Nanocrystals from Rhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry. Journal of the American Chemical Society, 2009, 131, 10860-10862.	13.7	94
54	A novel PEO-based composite solid-state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2008, 12, 353-361.	2.5	40

Yan-Xia Jiang

#	Article	IF	CITATIONS
55	Shapeâ€Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure–Functionality Relationships in Electrocatalysis. Angewandte Chemie - International Edition, 2008, 47, 9100-9103.	13.8	352
56	Silver Nanoparticles Confined in SBA-15 Mesoporous Silica and the Application as a Sensor for Detecting Hydrogen Peroxide. Journal of Nanomaterials, 2008, 2008, 1-10.	2.7	20
57	LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy. Science in China Series B: Chemistry, 2007, 50, 776-783.	0.8	22
58	An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of LiCoO2 cathode. Science Bulletin, 2007, 52, 1187-1195.	1.7	21
59	A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries. Journal of Power Sources, 2006, 160, 1320-1328.	7.8	78
60	Studies of the first lithiation of graphite materials by electrochemical impedance spectroscopy. Science Bulletin, 2006, 51, 1055-1059.	1.7	15
61	Self-Assembly Film of Zeolite Y Nanocrystals Loading Palladium on an Au Electrode for Electrochemical Applications. Electroanalysis, 2006, 18, 1173-1178.	2.9	13
62	Anomalous IR optical properties of aggregates of Pd nanoparticles induced through electrochemical cyclic voltammetry. Electrochimica Acta, 2005, 50, 3093-3099.	5.2	4
63	Electrocatalytic oxidation of carbon monoxide and methanol at Pt nanoparticles confined in SBA-15: voltammetric and in situ infrared spectroscopic studies. Journal of Solid State Electrochemistry, 2005, 9, 363-370.	2.5	29
64	FTIR Studies of Zeolite Matrix Effects on the Properties of Palladium Clusters Confined in the Supercages of NaX and NaY. Journal of Physical Chemistry B, 2005, 109, 7637-7642.	2.6	19
65	Special IR properties of palladium nanoparticles and their aggregations in CO molecular probe infrared spectroscopy. Science Bulletin, 2004, 49, 1581-1585.	1.7	1
66	Enhanced IR absorption of CO adsorbed on Pd nanoparticles embedded in the mesoporous molecular sieve SBA-15. Journal of Electroanalytical Chemistry, 2004, 563, 15-21.	3.8	31
67	ENHANCEMENT OF IR ABSORPTION OF CO ADSORBED ON PALLADIUM NANOPARTICLES PREPARED BY SHIP-IN-A-BOTTLE IN SUPERCAGES OF NaA ZEOLITE. , 2002, , .		1
68	Novel phenomenon of enhancement of IR absorption of CO adsorbed on nanoparticles of Pd confined in supercages of Y-zeolite. Chemical Physics Letters, 2001, 344, 463-470.	2.6	38
69	Voltammetric determination of 5-hydroxydole-3-acetic acid in human gastric juice. Talanta, 2000, 50, 1261-1266.	5.5	13
70	Fabrication of a chemically modified electrode containing 12-molybdophosphoric acid by the sol–gel technique and its application as an amperometric detector for iodate. Analytica Chimica Acta, 1999, 394, 73-80.	5.4	50
71	Redox Electrochemistry of Silicon Dioxide Gel Films Containing 1:12 Molybdosilicate Acid and Its Electrocatalytic Activity toward the Reduction of Nitrite Ions. Microchemical Journal, 1999, 62, 344-353.	4.5	6