
Long Kuai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-loading single-atom Pt/TiO2 mesoporous catalysts for superior photocatalytic oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2022, 337, 111949.	4.4	9
2	Boosting the Activity of Single-Atom Pt ₁ /CeO ₂ via Co Doping for Low-Temperature Catalytic Oxidation of CO. Inorganic Chemistry, 2022, 61, 11932-11938.	4.0	11
3	Ru Nanoworms Loaded TiO ₂ for Their Catalytic Performances toward CO Oxidation. ACS Applied Materials & amp; Interfaces, 2021, 13, 5079-5087.	8.0	22
4	Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Research, 2021, 14, 4841-4847.	10.4	26
5	Highly dispersed Cu atoms in MOF-derived N-doped porous carbon inducing Pt loads for superior oxygen reduction and hydrogen evolution. Chemical Engineering Journal, 2021, 426, 130749.	12.7	28
6	Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 2020, 11, 48.	12.8	223
7	Hollow mesoporous CeO2 microspheres for efficient loading of Au single-atoms to catalyze the water-gas shift reaction. Microporous and Mesoporous Materials, 2020, 308, 110507.	4.4	29
8	Mesoporous Cuâ€Ceâ€O _{<i>x</i>} Solid Solutions from Spray Pyrolysis for Superior Lowâ€Temperature CO Oxidation. Chemistry - A European Journal, 2019, 25, 15586-15593.	3.3	16
9	Cu7.2S4 nanosheets decorated on the {3 3 2} high index facets of Cu2O with controllable oxygen defects and enhanced photocatalytic activity. Advanced Powder Technology, 2019, 30, 2363-2368.	4.1	3
10	Defectâ€Ðriven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides. ChemSusChem, 2019, 12, 2564-2569.	6.8	28
11	Effect of Interface Contact Between C and C3N4 on Photocatalytic Water Splitting. Catalysis Letters, 2018, 148, 1435-1444.	2.6	5
12	Leaf-structure patterning for antireflective and self-cleaning surfaces on Si-based solar cells. Solar Energy, 2018, 159, 733-741.	6.1	43
13	Mesoporous LaMnO3+δ perovskite from sprayâ^'pyrolysis with superior performance for oxygen reduction reaction and Znâ^'air battery. Nano Energy, 2018, 43, 81-90.	16.0	71
14	Atomically Dispersed Pt/Metal Oxide Mesoporous Catalysts from Synchronous Pyrolysis–Deposition Route for Water–Gas Shift Reaction. Chemistry of Materials, 2018, 30, 5534-5538.	6.7	44
15	A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis. Electrochimica Acta, 2017, 225, 303-309.	5.2	46
16	Massâ€Production of Mesoporous MnCo ₂ O ₄ Spinels with Manganese(IV)―and Cobalt(II)â€Rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis. Angewandte Chemie, 2017, 129, 15173-15177.	2.0	61
17	Massâ€Production of Mesoporous MnCo ₂ O ₄ Spinels with Manganese(IV)―and Cobalt(II)â€Rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 14977-14981.	13.8	184
18	Scalable Dry Production Process of a Superior 3D Netâ€Like Carbonâ€Based Iron Oxide Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 12823-12827.	2.0	21

Long Kuai

#	Article	IF	CITATIONS
19	Scalable Dry Production Process of a Superior 3D Net‣ike Carbonâ€Based Iron Oxide Anode Material for Lithium″on Batteries. Angewandte Chemie - International Edition, 2017, 56, 12649-12653.	13.8	126
20	Porous Mn ₂ O ₃ : A Lowâ€Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C. Chemistry - A European Journal, 2016, 22, 9909-9913.	3.3	49
21	Hydrothermal Synthesis of a rGO Nanosheet Enwrapped NiFe Nanoalloy for Superior Electrocatalytic Oxygen Evolution Reactions. Chemistry - A European Journal, 2016, 22, 14480-14483.	3.3	29
22	Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochimica Acta, 2016, 212, 41-46.	5.2	36
23	Simultaneous tunable structure and composition of PtAg alloyed nanocrystals as superior catalysts. Nanoscale, 2016, 8, 14971-14978.	5.6	40
24	Delivery of Highly Active Nobleâ€Metal Nanoparticles into Microspherical Supports by an Aerosol‧pray Method. Chemistry - A European Journal, 2015, 21, 13291-13296.	3.3	15
25	Aerosol-spray diverse mesoporous metal oxides from metal nitrates. Scientific Reports, 2015, 5, 9923.	3.3	42
26	Au/Pt co-loaded ultrathin TiO ₂ nanosheets for photocatalyzed H ₂ evolution by the synergistic effect of plasmonic enhancement and co-catalysis. RSC Advances, 2015, 5, 98254-98259.	3.6	15
27	Preciousâ€Metalâ€Free Co–Fe–O/rGO Synergetic Electrocatalysts for Oxygen Evolution Reaction by a Facile Hydrothermal Route. ChemSusChem, 2015, 8, 659-664.	6.8	71
28	Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property. Scientific Reports, 2015, 5, 8722.	3.3	79
29	Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Research, 2015, 8, 3815-3822.	10.4	94
30	Fabrication of a Visible-Light-Driven Plasmonic Photocatalyst of AgVO ₃ @AgBr@Ag Nanobelt Heterostructures. ACS Applied Materials & Interfaces, 2014, 6, 5061-5068.	8.0	99
31	One-pot facile synthesis of reusable tremella-like M ₁ @M ₂ @M ₁ (OH) ₂ (M ₁ = Co, Ni,) Tj ETQq1 1 catalysts. Nanoscale. 2014. 6. 9791.	0.784314 5.6	rgBT /Overlo
32	CdS urchin-like microspheres/α-Fe2O3 and CdS/Fe3O4 nanoparticles heterostructures with improved photocatalytic recycled activities. Journal of Colloid and Interface Science, 2014, 426, 83-89.	9.4	20
33	A Reliable Aerosol‧prayâ€Assisted Approach to Produce and Optimize Amorphous Metal Oxide Catalysts for Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7547-7551.	13.8	234
34	Advanced Catalytic Performance of Au–Pt Doubleâ€Walled Nanotubes and Their Fabrication through Galvanic Replacement Reaction. Chemistry - A European Journal, 2013, 19, 11753-11758.	3.3	34
35	A Highly Efficient, Cleanâ€Surface, Porous Platinum Electrocatalyst and the Inhibition Effect of Surfactants on Catalytic Activity. Chemistry - A European Journal, 2013, 19, 240-248.	3.3	71
36	Shell structure-enhanced electrocatalytic performance of Au–Pt core–shell catalyst. CrystEngComm, 2013, 15, 2133.	2.6	17

Long Kuai

#	Article	IF	CITATIONS
37	Ag–Au bimetallic nanostructures: co-reduction synthesis and their component-dependent performance for enzyme-free H2O2 sensing. Journal of Materials Chemistry A, 2013, 1, 7111.	10.3	73
38	"Re-growth Etching―to Large-sized Porous Gold Nanostructures. Scientific Reports, 2013, 3, 2377.	3.3	19
39	Au–Pd Alloy and Core–Shell Nanostructures: One-Pot Coreduction Preparation, Formation Mechanism, and Electrochemical Properties. Langmuir, 2012, 28, 7168-7173.	3.5	87
40	A template-free route to a Fe3O4–Co3O4 yolk–shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. Journal of Materials Chemistry, 2012, 22, 19132.	6.7	116
41	Branched twinned Au nanostructures: facile hydrothermal reduction fabrication, growth mechanism and electrochemical properties. CrystEngComm, 2012, 14, 6581.	2.6	8
42	Pt nanoparticles residing in the pores of porous LaNiO3 nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells. Nanoscale, 2012, 4, 5386.	5.6	32
43	Low-cost and highly efficient composite visible light-driven Ag–AgBr/γ-Al2O3 plasmonic photocatalyst for degrading organic pollutants. Catalysis Science and Technology, 2012, 2, 1269.	4.1	36
44	CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Nanoscale, 2012, 4, 5738.	5.6	65
45	Ion-Exchange Route to Au–Cu _{<i>x</i>} OS Yolk–Shell Nanostructures with Porous Shells and Their Ultrasensitive H ₂ O ₂ Detection. ACS Applied Materials & Interfaces, 2012, 4, 6463-6467.	8.0	53
46	A General and High‥ield Galvanic Displacement Approach to AuM (M=Au, Pd, and Pt) Core–Shell Nanostructures with Porous Shells and Enhanced Electrocatalytic Performances. Chemistry - A European Journal, 2012, 18, 9423-9429.	3.3	52
47	Gold–platinum yolk–shell structure: a facile galvanic displacement synthesis and highly active electrocatalytic properties for methanol oxidation with super CO-tolerance. Chemical Communications, 2011, 47, 6093.	4.1	85
48	Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: High-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale, 2011, 3, 718-724.	5.6	121
49	Simultaneous reduction–etching route to Pt/ZnSnO3hollow polyhedral architectures for methanol electrooxidation in alkaline media with superior performance. Chemical Communications, 2011, 47, 2447-2449.	4.1	18
50	Silver and Gold Icosahedra: Oneâ€Pot Waterâ€Based Synthesis and Their Superior Performance in the Electrocatalysis for Oxygen Reduction Reactions in Alkaline Media. Chemistry - A European Journal, 2011, 17, 3482-3489.	3.3	44
51	Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Agâ~'AgBr Plasmonic Photocatalyst. Langmuir, 2010, 26, 18723-18727.	3.5	257