
Juan Galindo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shell color polymorphism in marine gastropods. Evolutionary Applications, 2023, 16, 202-222.	3.1	5
2	Proteomic analysis of F1 hybrids and intermediate variants in a <i>Littorina saxatilis</i> hybrid zone. Environmental Epigenetics, 2022, 68, 351-359.	1.8	3
3	Genetic and morphological divergence between <i>Littorina fabalis</i> ecotypes in Northern Europe. Journal of Evolutionary Biology, 2021, 34, 97-113.	1.7	10

Negative frequencyâ€dependent selection maintains shell banding polymorphisms in two marine snails () Tj ETQq0,0,0 rgBT /Qverlock 1

4		1.9	3
5	Mate Choice Contributes to the Maintenance of Shell Color Polymorphism in a Marine Snail via Frequency-Dependent Sexual Selection. Frontiers in Marine Science, 2020, 7, .	2.5	13
6	Transcriptomic resources for evolutionary studies in flat periwinkles and related species. Scientific Data, 2020, 7, 73.	5.3	1
7	Inferring fast ecotypic divergence in a protected marine area: comparing QST and FST patterns in Littorina saxatilis subpopulations from CÃes Islands in Spain. Marine Biology, 2020, 167, 1.	1.5	1
8	Untangling the contribution of genetic and environmental effects to shell differentiation across an environmental cline in a marine snail. Journal of Experimental Marine Biology and Ecology, 2019, 513, 27-34.	1,5	11
9	Population genomic footprints of environmental pollution pressure in natural populations of the Mediterranean mussel. Marine Genomics, 2019, 45, 11-15.	1.1	5
10	A novel method to estimate the spatial scale of mate choice in the wild. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	11
11	Karyotype Characterization of Nine Periwinkle Species (Gastropoda, Littorinidae). Genes, 2018, 9, 517.	2.4	10
12	Genomic divergence between Spanish <i>Littorina saxatilis</i> ecotypes unravels limited admixture and extensive parallelism associated with population history. Ecology and Evolution, 2018, 8, 8311-8327.	1.9	27
13	Size selection by a gapeâ€limited predator of a marine snail: Insights into magic traits for speciation. Ecology and Evolution, 2017, 7, 674-688.	1.9	28
14	Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. Journal of Evolutionary Biology, 2017, 30, 1450-1477.	1.7	399
15	Limited proteomic response in the marine snailMelarhaphe neritoidesafter long-term emersion. Environmental Epigenetics, 2017, 63, zow110.	1.8	5
16	Targeted resequencing reveals geographical patterns of differentiation for loci implicated in parallel evolution. Molecular Ecology, 2016, 25, 3169-3186.	3.9	27
17	Genetic characterization of flat periwinkles (Littorinidae) from the Iberian Peninsula reveals interspecific hybridization and different degrees of differentiation. Biological Journal of the Linnean Society, 2016, 118, 503-519.	1.6	12
18	Selection on outlier loci and their association with adaptive phenotypes in <i>Littorina saxatilis</i> contact zones. Journal of Evolutionary Biology, 2015, 28, 328-337.	1.7	18

Juan Galindo

#	Article	IF	CITATIONS
19	De novoisolation of 17 microsatellite loci for flat periwinkles (Littorina fabalisandL. obtusata) and their application for species discrimination and hybridization studies. Journal of Molluscan Studies, 2015, 81, 421-425.	1.2	7
20	Female transcriptomic response to male genetic and nongenetic ejaculate variation. Behavioral Ecology, 2015, 26, 681-688.	2.2	7
21	Ecological Speciation and the Intertidal Snail <i>Littorina saxatilis</i> . Advances in Ecology, 2014, 2014, 1-9.	0.5	16
22	Selection on hybrids of ecologically divergent ecotypes of a marine snail: the relative importance of exogenous and endogenous barriers. Biological Journal of the Linnean Society, 2014, 111, 391-400.	1.6	10
23	PARALLEL EVOLUTION OF LOCAL ADAPTATION AND REPRODUCTIVE ISOLATION IN THE FACE OF GENE FLOW. Evolution; International Journal of Organic Evolution, 2014, 68, 935-949.	2.3	165
24	Advances in <scp>E</scp> cological <scp>S</scp> peciation: an integrative approach. Molecular Ecology, 2014, 23, 513-521.	3.9	63
25	Do the same genes underlie parallel phenotypic divergence in different <i><scp>L</scp>ittorina saxatilis</i> populations?. Molecular Ecology, 2014, 23, 4603-4616.	3.9	73
26	The role of local ecology during hybridization at the initial stages of ecological speciation in a marine snail. Journal of Evolutionary Biology, 2013, 26, 1472-1487.	1.7	31
27	Transcriptome Characterisation of the Ant Formica exsecta with New Insights into the Evolution of Desaturase Genes in Social Hymenoptera. PLoS ONE, 2013, 8, e68200.	2.5	14
28	The Littorina sequence database (LSD) – an online resource for genomic data. Molecular Ecology Resources, 2012, 12, 142-148.	4.8	15
29	A Genome Scan and Linkage Disequilibrium Analysis among Chromosomal Races of the Australian Grasshopper Vandiemenella viatica. PLoS ONE, 2012, 7, e47549.	2.5	8
30	Habitat Choice and Speciation. International Journal of Ecology, 2012, 2012, 1-12.	0.8	27
31	Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 2011, 107, 1-15.	2.6	930
32	A practical homeâ€made microcentrifuge for teaching purposes. Biochemistry and Molecular Biology Education, 2011, 39, 298-299.	1.2	4
33	An ESTâ€based genome scan using 454 sequencing in the marine snail <i>Littorina saxatilis</i> . Journal of Evolutionary Biology, 2010, 23, 2004-2016.	1.7	71
34	Adaptation genomics: the next generation. Trends in Ecology and Evolution, 2010, 25, 705-712.	8.7	589
35	Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail <i>Littorina saxatilis</i> . Molecular Ecology, 2009, 18, 919-930.	3.9	84
36	Hitching a lift on the road to speciation. Molecular Ecology, 2008, 17, 4177-4180.	3.9	36

Juan Galindo

#	Article	IF	CITATIONS
37	Sympatric, parapatric or allopatric: the most important way to classify speciation?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2997-3007.	4.0	283
38	Genetic Differentiation and Estimation of Effective Population Size and Migration Rates in Two Sympatric Ecotypes of the Marine Snail Littorina saxatilis. Journal of Heredity, 2005, 96, 460-464.	2.4	10
39	Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Molecular Ecology, 2004, 13, 3415-3424.	3.9	104
40	The adaptive role of Phosphoglucomutase and other allozymes in a marine snail across the vertical rocky-shore gradient. Biological Journal of the Linnean Society, 0, 98, 225-233.	1.6	4