
Deepti Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526214/publications.pdf Version: 2024-02-01

DEEDTI IAIN

#	Article	IF	CITATIONS
1	The <i>Medicago truncatula</i> Sugar Transport Protein 13 and Its Lr67res-Like Variant Confer Powdery Mildew Resistance in Legumes via Defense Modulation. Plant and Cell Physiology, 2021, 62, 650-667.	3.1	11
2	Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Molecular Aspects of Medicine, 2021, 81, 101001.	6.4	21
3	The antiactivator FleN uses an allosteric mechanism to regulate $If < sup > 54 < /sup > -dependent expression of flagellar genes in Pseudomonas aeruginosa < /i>. Science Advances, 2021, 7, eabj1792.$	10.3	18
4	Draft Genome Sequence of a Poly-γ-Glutamic Acid-Producing Isolate, Bacillus paralicheniformis Strain bcasdu2018/01. Microbiology Resource Announcements, 2021, 10, e0101321.	0.6	0
5	Tetramerization at Low pH Licenses DNA Methylation Activity of M.HpyAXI in the Presence of Acid Stress. Journal of Molecular Biology, 2020, 432, 324-342.	4.2	7
6	Transcriptional Fidelity of Mitochondrial RNA Polymerase RpoTm from Arabidopsis thaliana. Journal of Molecular Biology, 2019, 431, 4767-4783.	4.2	0
7	Effector mining from the <i>Erysiphe pisi</i> haustorial transcriptome identifies novel candidates involved in pea powdery mildew pathogenesis. Molecular Plant Pathology, 2019, 20, 1506-1522.	4.2	21
8	Sensor I Regulated ATPase Activity of FleQ Is Essential for Motility to Biofilm Transition in <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2019, 14, 1515-1527.	3.4	15
9	Antibody specificity and promiscuity. Biochemical Journal, 2019, 476, 433-447.	3.7	31
10	Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family. EBioMedicine, 2018, 28, 168-179.	6.1	12
11	ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form. Structure, 2017, 25, 243-252.	3.3	14
12	Plasticity in Repressor-DNA Interactions Neutralizes Loss of Symmetry in Bipartite Operators. Journal of Biological Chemistry, 2016, 291, 1235-1242.	3.4	2
13	Cloning, expression, purification, crystallization and initial crystallographic analysis of FleN from <i>Pseudomonas aeruginosa</i> . Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 135-138.	0.8	5
14	Allosteric control of transcription in <scp>G</scp> nt <scp>R</scp> family of transcription regulators: A structural overview. IUBMB Life, 2015, 67, 556-563.	3.4	75
15	Spacing between core recognition motifs determines relative orientation of AraR monomers on bipartite operators. Nucleic Acids Research, 2013, 41, 639-647.	14.5	14
16	A novel method for the production of <i>in vivo</i> â€assembled, recombinant <i>Escherichia coli</i> RNA polymerase lacking the α Câ€ŧerminal domain. Protein Science, 2011, 20, 986-995.	7.6	32
17	The C-Terminal Domain of the MutL Homolog from Neisseria gonorrhoeae Forms an Inverted Homodimer. PLoS ONE, 2010, 5, e13726.	2.5	29
18	Computational Tools in Protein Crystallography. Methods in Molecular Biology, 2010, 673, 129-156.	0.9	6

Deepti Jain

#	Article	IF	CITATIONS
19	Active site geometry of oxalate decarboxylase from Flammulina velutipes: Role of histidine-coordinated manganese in substrate recognition. Protein Science, 2009, 11, 2138-2147.	7.6	17
20	Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin. Protein Science, 2009, 11, 2158-2167.	7.6	33
21	Crystal Structure of Bacteriophage λcII and Its DNA Complex. Molecular Cell, 2005, 19, 259-269.	9.7	39
22	Structure of a Ternary Transcription Activation Complex. Molecular Cell, 2004, 13, 45-53.	9.7	80
23	Plasticity in Protein-Peptide Recognition: Crystal Structures of Two Different Peptides Bound to Concanavalin A. Biophysical Journal, 2001, 80, 2912-2921.	0.5	21
24	Immunological implications of structural mimicry between a dodecapeptide and a carbohydrate moiety. Vaccine, 2001, 19, 3124-3130.	3.8	17
25	Enhanced Binding of a Rationally Designed Peptide Ligand of Concanavalin A Arises from Improved Geometrical Complementarityâ€. Biochemistry, 2001, 40, 12059-12066.	2.5	11
26	Structure of the Induced Antibacterial Protein from Tasar Silkworm, Antheraea mylitta. Journal of Biological Chemistry, 2001, 276, 41377-41382.	3.4	25
27	Functional Equality in the Absence of Structural Similarity. Journal of Biological Chemistry, 2001, 276, 39277-39281.	3.4	38
28	Structural and Functional Consequences of Peptide-Carbohydrate Mimicry. Journal of Biological Chemistry, 2000, 275, 16098-16102.	3.4	55
29	Structural Basis of Functional Mimicry between Carbohydrate and Peptide Ligands of Con A. Biochemical and Biophysical Research Communications, 2000, 272, 843-849.	2.1	30