Tokiyoshi Ayabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526132/publications.pdf

Version: 2024-02-01

69 papers

4,686 citations

201674 27 h-index 62 g-index

70 all docs

70 docs citations

times ranked

70

4723 citing authors

#	Article	IF	CITATIONS
1	Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO Health Study. GeroScience, 2022, 44, 997-1009.	4.6	13
2	Potent bactericidal activity of reduced cryptdin-4 derived from its hydrophobicity and mediated by bacterial membrane disruption. Amino Acids, 2022, 54, 289-297.	2.7	4
3	Intestinal commensal microbiota and cytokines regulate Fut2 ⁺ Paneth cells for gut defense. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	26
4	Simultaneous real-time analysis of Paneth cell and intestinal stem cell response to interferon- \hat{l}^3 by a novel stem cell niche tracking method. Biochemical and Biophysical Research Communications, 2021, 545, 14-19.	2.1	8
5	Decrease of \hat{l} ±-defensin impairs intestinal metabolite homeostasis via dysbiosis in mouse chronic social defeat stress model. Scientific Reports, 2021, 11, 9915.	3.3	28
6	Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids. Bioscience of Microbiota, Food and Health, 2020, 39, 11-17.	1.8	37
7	Mycotoxin Deoxynivalenol Has Different Impacts on Intestinal Barrier and Stem Cells by Its Route of Exposure. Toxins, 2020, 12, 610.	3.4	16
8	Expression and Localization of Paneth Cells and Their \hat{l}_{\pm} -Defensins in the Small Intestine of Adult Mouse. Frontiers in Immunology, 2020, 11, 570296.	4.8	19
9	Analysis of Serotonin in Human Feces Using Solid Phase Extraction and Column-Switching LC-MS/MS. Mass Spectrometry, 2020, 9, A0081-A0081.	0.6	2
10	Disease progression-associated alterations in fecal metabolites in SAMP1/YitFc mice, a Crohn's disease model. Metabolomics, 2020, 16, 48.	3.0	11
11	Paneth cell α-defensin misfolding correlates with dysbiosis and ileitis in Crohn's disease model mice. Life Science Alliance, 2020, 3, e201900592.	2.8	28
12	A simple culture method for liver and intestinal tissue-resident macrophages from neonatal mice. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 436-444.	1.5	3
13	Myc-induced nuclear antigen constrains a latent intestinal epithelial cell-intrinsic anthelmintic pathway. PLoS ONE, 2019, 14, e0211244.	2.5	5
14	Paneth cell granule dynamics on secretory responses to bacterial stimuli in enteroids. Scientific Reports, 2019, 9, 2710.	3.3	52
15	Butyric Acid and Leucine Induce α-Defensin Secretion from Small Intestinal Paneth Cells. Nutrients, 2019, 11, 2817.	4.1	55
16	Entamoeba histolytica Alters Ileal Paneth Cell Functions in Intact and Muc2 Mucin Deficiency. Infection and Immunity, 2018, 86, .	2.2	7
17	Ploidy-dependent change in cyclin D2 expression and sensitization to cdk4/6 inhibition in human somatic haploid cells. Biochemical and Biophysical Research Communications, 2018, 504, 231-237.	2.1	2
18	Essential role of IFN-γ in T cell–associated intestinal inflammation. JCI Insight, 2018, 3, .	5.0	83

#	Article	IF	Citations
19	R-Spondin1 expands Paneth cells and prevents dysbiosis induced by graft-versus-host disease. Journal of Experimental Medicine, 2017, 214, 3507-3518.	8.5	96
20	Paneth cell $\hat{1}\pm$ -defensins and enteric microbiota in health and disease. Bioscience of Microbiota, Food and Health, 2016, 35, 57-67.	1.8	79
21	Bacterial cell wall components regulate adipokine secretion from visceral adipocytes. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 149-154.	1.4	35
22	Efficient production of a correctly folded mouse \hat{l}_{\pm} -defensin, cryptdin-4, by refolding during inclusion body solubilization. Protein Expression and Purification, 2015, 112, 21-28.	1.3	9
23	R-spondin1 Promotes Paneth Cell Growth, Maintains Intestinal Microbial Ecology, and Ameliorates GvHD. Blood, 2015, 126, 230-230.	1.4	0
24	SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Scientific Reports, 2013, 3, 2629.	3.3	132
25	A monoclonal antibody-based sandwich enzyme-linked immunosorbent assay for detection of secreted α-defensin. Analytical Biochemistry, 2013, 443, 124-131.	2.4	23
26	Reciprocal Expression of Enteric Antimicrobial Proteins in Intestinal Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2013, 19, 1525-1529.	2.0	18
27	Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins. Blood, 2012, 120, 223-231.	1.4	280
28	Paneth Cells Regulate Both Chemotaxis of Immature Dendritic Cells and Cytokine Production from Epithelial Cells. Tohoku Journal of Experimental Medicine, 2012, 227, 39-48.	1.2	9
29	Paneth cells and stem cells in the intestinal stem cell niche and their association with inflammatory bowel disease. Inflammation and Regeneration, 2012, 32, 053-060.	3.7	1
30	A Systematic Analysis of Aromatic Heterocyclic Rings in Solvatochromic Fluorophores. Chemistry Letters, 2011, 40, 378-380.	1.3	8
31	Regulation of Microbiota by Antimicrobial Peptides in the Gut. Advances in Oto-Rhino-Laryngology, 2011, 72, 97-99.	1.6	11
32	Bactericidal Activity of Mouse \hat{l}_{\pm} -Defensin Cryptdin-4 Predominantly Affects Noncommensal Bacteria. Journal of Innate Immunity, 2011, 3, 315-326.	3.8	84
33	Expression of the antimicrobial peptide α-defensin/cryptdins in intestinal crypts decreases at the initial phase of intestinal inflammation in a model of inflammatory bowel disease, IL-10-deficient mice. Inflammatory Bowel Diseases, 2010, 16, 1488-1495.	1.9	21
34	Precursor Processing of Human Defensin-5 Is Essential to the Multiple Functions in vitro and in vivo. Journal of Innate Immunity, 2010, 2, 66-76.	3.8	30
35	Functional analysis of an $\hat{l}\pm$ -helical antimicrobial peptide derived from a novel mouse defensin-like gene. Biochemical and Biophysical Research Communications, 2010, 398, 778-784.	2.1	5
36	Molecular characteristics and physiological functions of major royal jelly protein 1 oligomer. Proteomics, 2009, 9, 5534-5543.	2.2	65

#	Article	IF	CITATIONS
37	Functional Role of Metaplastic Paneth Cell Defensins in <i>Helicobacter pylori</i> À€Infected Stomach. Helicobacter, 2008, 13, 370-379.	3.5	22
38	Denatured human α-defensin attenuates the bactericidal activity and the stability against enzymatic digestion. Biochemical and Biophysical Research Communications, 2007, 358, 349-355.	2.1	46
39	Mouse Paneth Cell Secretory Responses to Cell Surface Glycolipids of Virulent and Attenuated Pathogenic Bacteria. Infection and Immunity, 2005, 73, 2312-2320.	2.2	53
40	Reduction of syndecan-1 expression in differentiated type early gastric cancer and background mucosa with gastric cellular phenotype. Journal of Gastroenterology, 2004, 39, 104-112.	5.1	13
41	The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends in Microbiology, 2004, 12, 394-398.	7.7	104
42	Impaired nitric oxide production of the myenteric plexus in colitis detected by a new bioimaging system. Journal of Surgical Research, 2004, 117, 329-338.	1.6	18
43	Direct evidence that induced nitric oxide production in hepatocytes prevents liver damage during lipopolysaccharide tolerance in rats. Journal of Surgical Research, 2004, 118, 183-189.	1.6	13
44	IL-18 induces beta isoform of human glucocorticoid receptor in lymphocytes, to lead the glucocorticoid unresponsiveness in ulcerative colitis. Gastroenterology, 2003, 124, A334.	1.3	0
45	The role of human intestinal paneth cells expressing toll-like receptors in innate host defense. Gastroenterology, 2003, 124, A45.	1.3	0
46	Modulation of Mouse Paneth Cell α-Defensin Secretion by mIKCa1, a Ca2+-activated, Intermediate Conductance Potassium Channel. Journal of Biological Chemistry, 2002, 277, 3793-3800.	3.4	90
47	Natural history of colorectal nonpolypoid adenomas: a prospective colonoscopic study and relation with cell kinetics and K-ras mutations. American Journal of Gastroenterology, 2002, 97, 2109-2115.	0.4	16
48	Activation of Paneth Cell α-Defensins in Mouse Small Intestine. Journal of Biological Chemistry, 2002, 277, 5219-5228.	3.4	160
49	Quantitative analysis for human glucocorticoid receptor $\hat{l}\pm/\hat{l}^2$ mRNA in IBD. Biochemical and Biophysical Research Communications, 2002, 296, 1286-1294.	2.1	76
50	Minute findings by magnifying colonoscopy are useful for the evaluation of ulcerative colitis. Gastrointestinal Endoscopy, 2002, 56, 535-542.	1.0	56
51	Genetic and phenotypic polymorphisms of the A subunit of Coagulation factor XIII in Japanese population. Biochemical Genetics, 2002, 40, 339-349.	1.7	1
52	Minute findings by magnifying colonoscopy are useful for the evaluation of ulcerative colitis. Gastrointestinal Endoscopy, 2002, 56, 535-542.	1.0	51
53	Adaptive cytoprotection against acetic acid induced colonic injury in rats. International Journal of Colorectal Disease, 2001, 16, 384-390.	2.2	1
54	Secretion of microbicidal \hat{l}_{\pm} -defensins by intestinal Paneth cells in response to bacteria. Nature lmmunology, 2000, 1, 113-118.	14.5	939

#	Article	IF	CITATIONS
55	Balloon-occluded Endoscopic Retrograde Ileography. Radiology, 2000, 214, 908-911.	7.3	4
56	Mouse paneth cell secretory responses to in vitro microbial infection. Gastroenterology, 2000, 118, A695.	1.3	0
57	Remission-inducing potential of centrifugal leukocyte apheresis in refractory patients with active ulcerative colitis. Gastroenterology, 2000, 118, A584-A585.	1.3	O
58	Induction of dominant-negative regulator for glucocorticoid receptor observed in IBD patients. Gastroenterology, 2000, 118 , A350.	1.3	0
59	Expression of glucocorticoid receptor \hat{l}^2 in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology, 2000, 118, 859-866.	1.3	248
60	The calcium-activated potassium channel, mIKCa1, is paneth cell-specific in mouse small intestinal epithelium and functions in the secretory response. Gastroenterology, 2000, 118, A96.	1.3	0
61	Regulation of Intestinal α-Defensin Activation by the Metalloproteinase Matrilysin in Innate Host Defense. Science, 1999, 286, 113-117.	12.6	1,041
62	Centrifugal Leukocyte Apheresis for Ulcerative Colitis. Therapeutic Apheresis and Dialysis, 1998, 2, 125-128.	0.6	16
63	Invasion depth diagnosis of depressed type early colorectal cancers by combined use of videoendoscopy and chromoendoscopy. Gastrointestinal Endoscopy, 1998, 48, 362-370.	1.0	138
64	Tc-99m Leukocyte Imaging for Evaluating Disease Severity and Monitoring Treatment Response in Ulcerative Colitis: Comparison With Colonoscopy. Clinical Nuclear Medicine, 1998, 23, 509-513.	1.3	8
65	A Pilot Study of Centrifugal Leukocyte Apheresis for Corticosteroid-Resistant Active Ulcerative Colitis Internal Medicine, 1997, 36, 322-326.	0.7	42
66	A bamboo joint–like appearance of the gastric body and cardia: possible association with Crohn's disease. Gastrointestinal Endoscopy, 1997, 46, 268-272.	1.0	45
67	Efficacy of high-frequency ultrasound probes for the preoperative staging of invasion depth in flat and depressed colorectal tumors. Gastrointestinal Endoscopy, 1996, 44, 34-39.	1.0	178
68	Endoscopic Scoring System for Experimental Colitis with Trinitrobenzene Sulfonic Acid in Rats. Digestive Endoscopy, 1993, 5, 13-17.	2.3	1
69	Effects of Cyanoacrylate on the Gastric Mucosa of Dogs –Endoscopic and Histopathological Studies for Sclerotherapy of Gastric Varices–. Digestive Endoscopy, 1991, 3, 302-307.	2.3	1