
Jennifer Munkley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6526069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. International Journal of Molecular Sciences, 2021, 22, 455.	4.1	74
2	Tumour associated glycans: A route to boost immunotherapy?. Clinica Chimica Acta, 2020, 502, 167-173.	1.1	24
3	ST6GAL1: A key player in cancer (Review). Oncology Letters, 2019, 18, 983-989.	1.8	76
4	Targeting Aberrant Sialylation to Treat Cancer. Medicines (Basel, Switzerland), 2019, 6, 102.	1.4	53
5	Alternative splicing in lung cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194388.	1.9	47
6	Glycans as Biomarkers in Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 1389.	4.1	80
7	The glycosylation landscape of pancreatic cancer (Review). Oncology Letters, 2019, 17, 2569-2575.	1.8	70
8	Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. ELife, 2019, 8, .	6.0	56
9	Androgen-dependent alternative mRNA isoform expression in prostate cancer cells. F1000Research, 2018, 7, 1189.	1.6	16
10	Glycosylation is a global target for androgen control in prostate cancer cells. Endocrine-Related Cancer, 2017, 24, R49-R64.	3.1	53
11	RNA splicing and splicing regulator changes in prostate cancer pathology. Human Genetics, 2017, 136, 1143-1154.	3.8	52
12	The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration. Scientific Reports, 2017, 7, 5249.	3.3	39
13	Hallmarks of glycosylation in cancer. Oncotarget, 2016, 7, 35478-35489.	1.8	358
14	The Role of Sialyl-Tn in Cancer. International Journal of Molecular Sciences, 2016, 17, 275.	4.1	164
15	The role of glycans in the development and progression of prostate cancer. Nature Reviews Urology, 2016, 13, 324-333.	3.8	79
16	JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells, 2016, 34, 1198-1212.	3.2	21
17	Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine, 2016, 8, 103-116.	6.1	76
18	Androgen receptor and prostate cancer. AIMS Molecular Science, 2016, 3, 280-299.	0.5	22

JENNIFER MUNKLEY

#	Article	IF	CITATIONS
19	The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget, 2015, 6, 34358-34374.	1.8	68
20	Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells. BMC Cancer, 2015, 15, 9.	2.6	41
21	Metronidazole Toxicity in Cockayne Syndrome: A Case Series. Pediatrics, 2015, 136, e706-e708.	2.1	17
22	The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells. Oncoscience, 2015, 2, 755-764.	2.2	23
23	EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nature Communications, 2014, 5, 4287.	12.8	120
24	A novel androgen-regulated isoform of the TSC2 tumour suppressor gene increases cell proliferation. Oncotarget, 2014, 5, 131-139.	1.8	27
25	Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Research, 2011, 39, 2671-2677.	14.5	16