Yiping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6524782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rescue of cleft palate in <i>Msx1</i> -deficient mice by transgenic <i>Bmp4</i> reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development (Cambridge), 2002, 129, 4135-4146.	2.5	332
2	Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Developmental Biology, 2009, 327, 376-385.	2.0	209
3	Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development (Cambridge), 2008, 135, 3871-3879.	2.5	200
4	Antagonistic Signals between BMP4 and FGF8 Define the Expression of Pitx1 and Pitx2 in Mouse Tooth-Forming Anlage. Developmental Biology, 2000, 217, 323-332.	2.0	183
5	Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development (Cambridge), 2002, 129, 4135-46.	2.5	175
6	Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate. Development (Cambridge), 2005, 132, 4397-4406.	2.5	133
7	Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Developmental Biology, 2010, 340, 438-449.	2.0	125
8	The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Developmental Biology, 2005, 277, 102-113.	2.0	117
9	<i>Pitx2</i> -microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9181-9186.	7.1	109
10	A common <i>Shox2</i> - <i>Nkx2-5</i> antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node. Development (Cambridge), 2015, 142, 2521-32.	2.5	105
11	Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. Developmental Biology, 2010, 347, 109-121.	2.0	93
12	Transgenically ectopic expression of Bmp4 to the Msx1 mutant dental mesenchyme restores downstream gene expression but represses Shh and Bmp2 in the enamel knot of wild type tooth germ. Mechanisms of Development, 2000, 99, 29-38.	1.7	87
13	Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression. Developmental Biology, 2011, 350, 511-519.	2.0	83
14	Shaping limbs by apoptosis>. The Journal of Experimental Zoology, 1998, 282, 691-702.	1.4	81
15	Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Developmental Dynamics, 2011, 240, 432-440.	1.8	78
16	Msx1 is required for the induction ofPatched bySonic hedgehog in the mammalian tooth germ. Developmental Dynamics, 1999, 215, 45-53.	1.8	76
17	Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton. Developmental Biology, 2007, 306, 549-559.	2.0	73
18	Hand2 is required in the epithelium for palatogenesis in mice. Developmental Biology, 2009, 330, 131-141.	2.0	68

#	Article	IF	CITATIONS
19	BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development. Developmental Biology, 2011, 349, 451-461.	2.0	68
20	Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice. Developmental Biology, 2011, 356, 359-369.	2.0	66
21	BMP-FGF Signaling Axis Mediates Wnt-Induced Epidermal Stratification in Developing Mammalian Skin. PLoS Genetics, 2014, 10, e1004687.	3.5	66
22	Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in mice. Mechanisms of Development, 2008, 125, 729-742.	1.7	61
23	The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development (Cambridge), 2015, 142, 128-139.	2.5	60
24	Msx1/Bmp4 genetic pathway regulates mammalian alveolar bone formation via induction of Dlx5 and Cbfa1. Mechanisms of Development, 2003, 120, 1469-1479.	1.7	53
25	Expression survey of genes critical for tooth development in the human embryonic tooth germ. Developmental Dynamics, 2007, 236, 1307-1312.	1.8	53
26	Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Developmental Dynamics, 2006, 235, 1347-1357.	1.8	52
27	Mice with Tak1 Deficiency in Neural Crest Lineage Exhibit Cleft Palate Associated with Abnormal Tongue Development. Journal of Biological Chemistry, 2013, 288, 10440-10450.	3.4	50
28	Induction of human keratinocytes into enamel-secreting ameloblasts. Developmental Biology, 2010, 344, 795-799.	2.0	48
29	Intra-epithelial Requirement of Canonical Wnt Signaling for Tooth Morphogenesis. Journal of Biological Chemistry, 2013, 288, 12080-12089.	3.4	48
30	Targeted Misexpression of Constitutively Active BMP Receptor-IB Causes Bifurcation, Duplication, and Posterior Transformation of Digit in Mouse Limb. Developmental Biology, 2000, 220, 154-167.	2.0	45
31	Functional Redundancy between Human SHOX and Mouse Shox2 Genes in the Regulation of Sinoatrial Node Formation and Pacemaking Function. Journal of Biological Chemistry, 2011, 286, 17029-17038.	3.4	44
32	Pten Loss Induces Autocrine FGF Signaling to Promote Skin Tumorigenesis. Cell Reports, 2014, 6, 818-826.	6.4	44
33	Enhanced BMP signaling prevents degeneration and leads to endochondral ossification of Meckel′s cartilage in mice. Developmental Biology, 2013, 381, 301-311.	2.0	43
34	Timing of odontogenic neural crest cell migration and tooth-forming capability in mice. Developmental Dynamics, 2003, 226, 713-718.	1.8	41
35	Tissue interaction is required for glenoid fossa development during temporomandibular joint formation. Developmental Dynamics, 2011, 240, 2466-2473.	1.8	40
36	Cellular and developmental basis of orofacial clefts. Birth Defects Research, 2020, 112, 1558-1587.	1.5	40

#	Article	IF	CITATIONS
37	Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect. Developmental Biology, 2014, 391, 170-181.	2.0	39
38	Single-cell RNA sequencing deconvolutes the <i>in vivo</i> heterogeneity of human bone marrow-derived mesenchymal stem cells. International Journal of Biological Sciences, 2021, 17, 4192-4206.	6.4	39
39	<i>Gsk3β</i> is required in the epithelium for palatal elevation in mice. Developmental Dynamics, 2010, 239, 3235-3246.	1.8	36
40	Generation of <i>Shox2â€Cre</i> allele for tissue specific manipulation of genes in the developing heart, palate, and limb. Genesis, 2013, 51, 515-522.	1.6	36
41	Exploring the effects of gene dosage on mandible shape in mice as a model for studying the genetic basis of natural variation. Development Genes and Evolution, 2013, 223, 279-287.	0.9	34
42	FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development (Cambridge), 2013, 140, 4375-4385.	2.5	34
43	Augmented BMPRIA-Mediated BMP Signaling in Cranial Neural Crest Lineage Leads to Cleft Palate Formation and Delayed Tooth Differentiation. PLoS ONE, 2013, 8, e66107.	2.5	34
44	BMPRIA Mediated Signaling Is Essential for Temporomandibular Joint Development in Mice. PLoS ONE, 2014, 9, e101000.	2.5	33
45	Chick <i>Pcl2</i> regulates the left-right asymmetry by repressing <i>Shh</i> expression in Hensen's node. Development (Cambridge), 2004, 131, 4381-4391.	2.5	32
46	The Role of Shox2 in SAN Development and Function. Pediatric Cardiology, 2012, 33, 882-889.	1.3	32
47	Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice. Cell and Tissue Research, 2019, 376, 199-210.	2.9	30
48	Expression of SHH signaling molecules in the developing human primary dentition. BMC Developmental Biology, 2013, 13, 11.	2.1	28
49	An Atypical Canonical Bone Morphogenetic Protein (BMP) Signaling Pathway Regulates Msh Homeobox 1 (Msx1) Expression during Odontogenesis. Journal of Biological Chemistry, 2014, 289, 31492-31502.	3.4	28
50	FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells <i>in vivo</i> and <i>in vitro</i> . Journal of Molecular Cell Biology, 2015, 7, 441-454.	3.3	28
51	Genetic Regulation of Sinoatrial Node Development and Pacemaker Program in the Venous Pole. Journal of Cardiovascular Development and Disease, 2015, 2, 282-298.	1.6	26
52	The Short Stature Homeobox 2 (Shox2)-bone Morphogenetic Protein (BMP) Pathway Regulates Dorsal Mesenchymal Protrusion Development and Its Temporary Function as a Pacemaker during Cardiogenesis. Journal of Biological Chemistry, 2015, 290, 2007-2023.	3.4	26
53	TGF-β signaling inhibits canonical BMP signaling pathway during palate development. Cell and Tissue Research, 2018, 371, 283-291.	2.9	26
54	Mice with an anterior cleft of the palate survive neonatal lethality. Developmental Dynamics, 2008, 237, 1509-1516.	1.8	25

#	Article	IF	CITATIONS
55	<i>Nkx2-5</i> defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development (Cambridge), 2019, 146, .	2.5	23
56	Opposing roles of TCF7/LEF1 and TCF7L2 in cyclin D2 and Bmp4 expression and cardiomyocyte cell cycle control during late heart development. Laboratory Investigation, 2019, 99, 807-818.	3.7	20
5 7	Expression and regulation of the chickenNkx-6.2 homeobox gene suggest its possible involvement in the ventral neural patterning and cell fate specification. , 1999, 216, 459-468.		19
58	Evidence for the differential regulation ofNkx-6.1 expression in the ventral spinal cord and foregut byShh-dependent and -independent mechanisms. Genesis, 2000, 27, 6-11.	1.6	19
59	Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves. PLoS ONE, 2015, 10, e0136951.	2.5	19
60	ISLET1-Dependent <i>î²</i> -Catenin/Hedgehog Signaling Is Required for Outgrowth of the Lower Jaw. Molecular and Cellular Biology, 2017, 37, .	2.3	19
61	A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. Aging, 2021, 13, 20629-20650.	3.1	19
62	Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochemistry and Cell Biology, 2014, 142, 657-665.	1.7	18
63	Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice. Cell and Tissue Research, 2014, 355, 345-354.	2.9	17
64	Shox2 regulates osteogenic differentiation and pattern formation during hard palate development in mice. Journal of Biological Chemistry, 2019, 294, 18294-18305.	3.4	17
65	Phosphorylation of Shox2 Is Required for Its Function to Control Sinoatrial Node Formation. Journal of the American Heart Association, 2014, 3, e000796.	3.7	16
66	Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Research and Therapy, 2018, 9, 126.	5.5	16
67	Bioengineering of a human whole tooth: progress and challenge. Cell Regeneration, 2014, 3, 3:8.	2.6	15
68	A unique stylopod patterning mechanism by <i>Shox2</i> controlled osteogenesis. Development (Cambridge), 2016, 143, 2548-60.	2.5	15
69	The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice. Journal of Biological Chemistry, 2020, 295, 5449-5460.	3.4	15
70	Regrowing a tooth: in vitro and in vivo approaches. Current Opinion in Cell Biology, 2019, 61, 126-131.	5.4	14
71	Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Developmental Dynamics, 2011, 240, 1344-1353.	1.8	13
72	Precise chronology of differentiation of developing human primary dentition. Histochemistry and Cell Biology, 2014, 141, 221-227.	1.7	12

#	Article	IF	CITATIONS
73	LDL Receptor–Related Protein 6 Modulates Ret Proto-Oncogene Signaling in Renal Development and Cystic Dysplasia. Journal of the American Society of Nephrology: JASN, 2016, 27, 417-427.	6.1	12
74	Mouse embryonic diastema region is an ideal site for the development of ectopically transplanted tooth germ. Developmental Dynamics, 2008, 237, 411-416.	1.8	10
75	Overexpression of constitutively active BMP-receptor-IB in mouse skin causes an ichthyosis-vulgaris-like disease. Cell and Tissue Research, 2010, 342, 401-410.	2.9	10
76	Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons. Cellular and Molecular Life Sciences, 2020, 77, 3597-3609.	5.4	8
77	Augmented Indian hedgehog signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic temporomandibular joint in mice. Cell and Tissue Research, 2016, 364, 105-115.	2.9	7
78	Single-cell transcriptomic signatures and gene regulatory networks modulated by Wls in mammalian midline facial formation and clefts. Development (Cambridge), 2022, 149, .	2.5	6
79	Persistent Noggin arrests cardiomyocyte morphogenesis and results in early in utero lethality. Developmental Dynamics, 2015, 244, 457-467.	1.8	5
80	Discovery and functional assessment of a novel adipocyte population driven by intracellular Wnt/ \hat{l}^2 -catenin signaling in mammals. ELife, 2022, 11, .	6.0	5
81	Exogenous FGF8 signaling in osteocytes leads to mandibular hypoplasia in mice. Oral Diseases, 2020, 26, 590-596.	3.0	4
82	FGF8-mediated signaling regulates tooth developmental pace during odontogenesis. Journal of Genetics and Genomics, 2022, 49, 40-53.	3.9	4
83	Identification and analysis of a novel bmp4 enhancer in Fugu genome. Archives of Oral Biology, 2015, 60, 540-545.	1.8	2
84	Conjugated activation of myocardial-specific transcription of Gja5 by a pair of Nkx2-5-Shox2 co-responsive elements. Developmental Biology, 2020, 465, 79-87.	2.0	2
85	The Transcription Factor Shox2 Shapes Neuron Firing Properties and Suppresses Seizures by Regulation of Key Ion Channels in Thalamocortical Neurons. Cerebral Cortex, 2021, 31, 3194-3212.	2.9	2
86	Reply to Kelder et al.: Does the Dorsal Mesenchymal Protrusion Act as a Temporary Pacemaker during Heart Development?. Journal of Biological Chemistry, 2015, 290, 8015.	3.4	0
87	Wnt5a regulates directional cell migration and cell proliferation via Ror2â€mediated noncanonical pathway in mammalian palatogenesis. FASEB Journal, 2009, 23, 308.4.	0.5	Ο