Yichun Liu ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/6524706/publications.pdf Version: 2024-02-01 567 33,993 85 160 papers citations h-index g-index 568 568 568 35568 all docs docs citations times ranked citing authors | # | Article | IF | CITATIONS | |----|--|--------------|-----------| | 1 | Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for highâ∈performance flexible energy storage. Energy Storage Materials, 2022, 44, 250-262. | 9.5 | 35 | | 2 | Flexible, conformal composite proximity sensor for detection of conductor and insulator. Chinese Journal of Analytical Chemistry, 2022, 50, 20-23. | 0.9 | 6 | | 3 | Anchoring bismuth oxybromo-iodide solid solutions on flexible electrospun polyacrylonitrile nanofiber mats for floating photocatalysis. Journal of Colloid and Interface Science, 2022, 608, 3178-3191. | 5.0 | 13 | | 4 | Recent progress in optoelectronic memristive devices for in-sensor computing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148701. | 0.2 | 3 | | 5 | Pavlovian conditioning achieved via one-transistor/one-resistor memristive synapse. Applied Physics
Letters, 2022, 120, . | 1.5 | 8 | | 6 | Highâ€Mobility Fungusâ€Triggered Biodegradable Ultraflexible Organic Transistors. Advanced Science, 2022, 9, e2105125. | 5 . 6 | 10 | | 7 | Plasmonic Optoelectronic Memristor Enabling Fully Lightâ€Modulated Synaptic Plasticity for Neuromorphic Vision. Advanced Science, 2022, 9, e2104632. | 5. 6 | 81 | | 8 | Engineering Relaxation-Paths of C-Exciton for Constructing Band Nesting Bypass in WS ₂ Monolayer. Nano Letters, 2022, 22, 3699-3706. | 4.5 | 6 | | 9 | Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. Sensors and Actuators B: Chemical, 2022, 365, 131926. | 4.0 | 26 | | 10 | Three-dimensional porous CuFe2O4 for visible-light-driven peroxymonosulfate activation with superior performance for the degradation of tetracycline hydrochloride. Chemical Engineering Journal, 2022, 445, 136616. | 6.6 | 27 | | 11 | Conductance Quantization in CH ₃ NH ₃ Pbl ₃ Memristor. IEEE Electron Device Letters, 2022, 43, 1037-1040. | 2.2 | 2 | | 12 | Research progress in skin-like ultraflexible organic field-effect transistors. Scientia Sinica Chimica, 2022, 52, 1925-1947. | 0.2 | 1 | | 13 | AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering C, 2021, 118, 111331. | 3.8 | 48 | | 14 | Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. Journal of Hazardous Materials, 2021, 403, 124093. | 6.5 | 75 | | 15 | An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. Materials Science and Engineering C, 2021, 119, 111608. | 3.8 | 15 | | 16 | Subâ∈Femtojouleâ∈Energyâ∈Consumption Conformable Synaptic Transistors Based on Organic Singleâ∈Crystalline Nanoribbons. Advanced Functional Materials, 2021, 31, 2007894. | 7.8 | 45 | | 17 | Blurred Electrode for Low Contact Resistance in Coplanar Organic Transistors. ACS Nano, 2021, 15, 1155-1166. | 7.3 | 19 | | 18 | Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing. Nanoscale Advances, 2021, 3, 2623-2631. | 2.2 | 17 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 19 | Neutron irradiation-induced effects on the reliability performance of electrochemical metallization memory devices. Journal of Semiconductors, 2021, 42, 014103. | 2.0 | 3 | | 20 | Facile sputtering enables double-layered ZnO electron transport layer for PbS quantum dot solar cells. Solar Energy, 2021, 214, 599-605. | 2.9 | 3 | | 21 | Facile preparation of flexible polyacrylonitrile/BiOCl/BiOI nanofibers via SILAR method for effective floating photocatalysis. Journal of Sol-Gel Science and Technology, 2021, 97, 610-621. | 1.1 | 12 | | 22 | Dual Buffer Layers for Developing Electrochemical Metallization Memory With Low Current and High Endurance. IEEE Electron Device Letters, 2021, 42, 308-311. | 2.2 | 16 | | 23 | Self-Powered Memristive Systems for Storage and Neuromorphic Computing. Frontiers in Neuroscience, 2021, 15, 662457. | 1.4 | 7 | | 24 | Enhanced Photostability and Photoluminescence of PbI 2 via Constructing Type†Heterostructure with ZnO. Advanced Photonics Research, 2021, 2, 2000183. | 1.7 | 2 | | 25 | Zeoliteâ€Based Memristive Synapse with Ultralow Subâ€10â€fJ Energy Consumption for Neuromorphic Computation. Small, 2021, 17, e2006662. | 5.2 | 13 | | 26 | Selection of Insulating Elastomers for High-Performance Intrinsically Stretchable Transistors. ACS Applied Electronic Materials, 2021, 3, 1458-1467. | 2.0 | 5 | | 27 | Plasmon-driven light harvesting in poly(vinyl alcohol) films for precise surface topography modulation. Optics Letters, 2021, 46, 1828. | 1.7 | 2 | | 28 | Nondestructive readout of holographic memory in Ag/TiO2 heterojunction via carbon-dots and hydrogel co-modification. Applied Physics Letters, 2021, 118, 141601. | 1.5 | 1 | | 29 | Brain-inspired computing via memory device physics. APL Materials, 2021, 9, . | 2.2 | 49 | | 30 | Hyaluronic acid nanofibers crosslinked with a nontoxic reagent. Carbohydrate Polymers, 2021, 259, 117757. | 5.1 | 15 | | 31 | Humidity Effect on Resistive Switching Characteristics of the CH ₃ NH ₃ Pbl ₃ Memristor. ACS Applied Materials & amp; Interfaces, 2021, 13, 28555-28563. | 4.0 | 43 | | 32 | High switching uniformity and 50 fJ/bit energy consumption achieved in amorphous silicon-based memristive device with an AgInSbTe buffer layer. Applied Physics Letters, 2021, 118, 263507. | 1.5 | 3 | | 33 | Crosslinked carboxymethyl starch nanofiber mats: Preparation, water resistance and exudates control ability. European Polymer Journal, 2021, 154, 110568. | 2.6 | 5 | | 34 | Self-Standing and Flexible Thermoelectric Nanofiber Mat of an n-Type Conjugated Polymer. ACS Applied Electronic Materials, 2021, 3, 3641-3647. | 2.0 | 10 | | 35 | Effects of preparation parameters on the properties of the crosslinked pectin nanofiber mats. Carbohydrate Polymers, 2021, 269, 118314. | 5.1 | 5 | | 36 | Ternary NiTiO ₃ @g-C ₃ N ₄ â€"Au nanofibers with a synergistic Z-scheme core@shell interface and dispersive Schottky contact surface for enhanced solar photocatalytic activity. Materials Chemistry Frontiers, 2021, 5, 2730-2741. | 3.2 | 14 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 37 | Thermal-assisted electroforming enables performance improvement by suppressing the overshoot current in amorphous carbon-based electrochemical metallization memory. Applied Physics Letters, 2021, 119, . | 1.5 | 3 | | 38 | Flexible Allâ€Inorganic Roomâ€Temperature Chemiresistors Based on Fibrous Ceramic Substrate and Visibleâ€Lightâ€Powered Semiconductor Sensing Layer. Advanced Science, 2021, 8, e2102471. | 5.6 | 21 | | 39 | Natural Acidic Polysaccharideâ€Based Memristors for Transient Electronics: Highly Controllable
Quantized Conductance for Integrated Memory and Nonvolatile Logic Applications. Advanced
Materials, 2021, 33, e2104023. | 11.1 | 30 | | 40 | Highly Photoluminescent Monolayer MoS ₂ and WS ₂ Achieved via Superacid Assisted Vacancy Reparation and Doping Strategy. Laser and Photonics Reviews, 2021, 15, 2100104. | 4.4 | 11 | | 41 | Highly Stable Nonhydroxyl Antisolvent Polymer Dielectric: A New Strategy towards High-Performance
Low-Temperature Solution-Processed Ultraflexible Organic Transistors for Skin-Inspired Electronics.
Research, 2021, 2021, 9897353. | 2.8 | 7 | | 42 | Crosslinked starch nanofibers with high mechanical strength and excellent water resistance for biomedical applications. Biomedical Materials (Bristol), 2020, 15, 025007. | 1.7 | 17 | | 43 | Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochimica Acta, 2020, 330, 135212. | 2.6 | 38 | | 44 | Facile Fabrication of Ultraflexible Transparent Electrodes Using Embedded Copper Networks for Wearable Pressure Sensors. Advanced Materials Technologies, 2020, 5, 1900823. | 3.0 | 17 | | 45 | Analytical modeling of electrochemical metallization memory device with dual-layer structure of Ag/AgInSbTe/amorphous C/Pt. Semiconductor Science and Technology, 2020, 35, 02LT01. | 1.0 | 2 | | 46 | Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2. Chinese Journal of Catalysis, 2020, 41, 154-160. | 6.9 | 59 | | 47 | Unveiling Bandgap Evolution and Carrier Redistribution in Multilayer WSe 2 : Enhanced Photon Emission via Heat Engineering. Advanced Optical Materials, 2020, 8, 1901226. | 3.6 | 12 | | 48 | A coral-like hematite photoanode on a macroporous SnO2: Sb substrate for enhanced photoelectrochemical water oxidation. Electrochimica Acta, 2020, 360, 137012. | 2.6 | 3 | | 49 | Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Materials, 2020, 12, . | 3.8 | 47 | | 50 |
Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. Journal of Materials Chemistry C, 2020, 8, 15646-15654. | 2.7 | 26 | | 51 | Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes. ACS Applied Materials & Sump; Interfaces, 2020, 12, 55083-55093. | 4.0 | 79 | | 52 | Cobweb-like, Ultrathin Porous Polymer Films for Ultrasensitive NO ₂ Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. ACS | 4.0 | 15 | | 53 | Photo-tunable organic resistive random access memory based on PVP/N-doped carbon dot nanocomposites for encrypted image storage. Journal of Materials Chemistry C, 2020, 8, 14789-14795. | 2.7 | 18 | | 54 | Cellulose nanofibers electrospun from aqueous conditions. Cellulose, 2020, 27, 8695-8708. | 2.4 | 6 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 55 | Ultraflexible, Degradable Organic Synaptic Transistors Based on Natural Polysaccharides for Neuromorphic Applications. Advanced Functional Materials, 2020, 30, 2006271. | 7.8 | 45 | | 56 | CuSx hole transport layer for PbS quantum dot solar cell. Solar Energy, 2020, 209, 118-122. | 2.9 | 2 | | 57 | Silent Synapse: Silent Synapse Activation by Plasmaâ€Induced Oxygen Vacancies in TiO ₂ Nanowireâ€Based Memristor (Adv. Electron. Mater. 9/2020). Advanced Electronic Materials, 2020, 6, 2070039. | 2.6 | 2 | | 58 | Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 8754-8765. | 7.3 | 135 | | 59 | Enhanced Solar Photothermal Catalysis over Solution Plasma Activated TiO ₂ . Advanced Science, 2020, 7, 2000204. | 5.6 | 89 | | 60 | Flexible, Conformable Organic Semiconductor Proximity Sensor Array for Electronic Skin. Advanced Materials Interfaces, 2020, 7, 2000306. | 1.9 | 32 | | 61 | Enhanced Carrier–Exciton Interactions in Monolayer MoS2 under Applied Voltages. ACS Applied
Materials & Interfaces, 2020, 12, 18870-18876. | 4.0 | 7 | | 62 | Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nature Communications, 2020, 11, 1510. | 5.8 | 124 | | 63 | TiO ₂ /SrTiO ₃ /g-C ₃ N ₄ ternary heterojunction nanofibers: gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation. Nanoscale, 2020, 12, 8320-8329. | 2.8 | 88 | | 64 | Spray-processed nanoporous BiVO4 photoanodes with high charge separation efficiency for oxygen evolution. APL Materials, 2020, 8, . | 2.2 | 6 | | 65 | Discrete heterojunction nanofibers of BiFeO3/Bi2WO6: Novel architecture for effective charge separation and enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2020, 572, 257-268. | 5.0 | 60 | | 66 | Photoassisted Electroforming Method for Reliable Lowâ€Power Organic–Inorganic Perovskite Memristors. Advanced Functional Materials, 2020, 30, 1910151. | 7.8 | 62 | | 67 | Two-terminal optoelectronic memory device. , 2020, , 75-105. | | 0 | | 68 | Directly Spin Coating a Lowâ€Viscosity Organic Semiconductor Solution onto Hydrophobic Surfaces: Toward Highâ€Performance Solutionâ€Processable Organic Transistors. Advanced Materials Interfaces, 2020, 7, 1901950. | 1.9 | 15 | | 69 | MoSe ₂ /TiO ₂ Nanofibers for Cycling Photocatalytic Removing Water
Pollutants under UV–Vis–NIR Light. ACS Applied Nano Materials, 2020, 3, 2278-2287. | 2.4 | 35 | | 70 | Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 2020, 71, 104628. | 8.2 | 44 | | 71 | Bidirectional Photochromism via Anchoring of Carbon Dots to TiO ₂ Porous Films. ACS Applied Materials & Dots to TiO ₂ Porous Films. ACS | 4.0 | 13 | | 72 | Solution-processed PDMS/SWCNT porous electrodes with high mass loading: toward high performance all-stretchable-component lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 2718-2726. | 2.5 | 17 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 73 | Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. Sensors and Actuators B: Chemical, 2020, 317, 128194. | 4.0 | 60 | | 74 | Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Materials Science and Engineering C, 2020, 112, 110941. | 3.8 | 23 | | 75 | Revisiting Pt/TiO ₂ photocatalysts for thermally assisted photocatalytic reduction of CO ₂ . Nanoscale, 2020, 12, 7000-7010. | 2.8 | 73 | | 76 | Enhancing hologram memory via deposition of plasmonic nanocubes on orderly mesoporous titania. Optics Express, 2020, 28, 13008. | 1.7 | 4 | | 77 | Resistive switching performance improvement of amorphous carbon-based electrochemical metallization memory via current stressing. Applied Physics Letters, 2019, 115, 073501. | 1.5 | 9 | | 78 | Ultrasensitive Charged Object Detection Based on Rubrene Crystal Sensor. IEEE Transactions on Electron Devices, 2019, 66, 3139-3143. | 1.6 | 6 | | 79 | The role of DUV laser irradiation in the optical and electrical properties of indium zinc oxide films synthesized by self-combustion. Journal of Alloys and Compounds, 2019, 806, 327-334. | 2.8 | 5 | | 80 | Highly electron-depleted ZnO/ZnFe2O4/Au hollow meshes as an advanced material for gas sensing application. Sensors and Actuators B: Chemical, 2019, 297, 126769. | 4.0 | 42 | | 81 | Hierarchically Porous In2O3/In2S3 Heterostructures as Micronano Photocatalytic Reactors Prepared by a Novel Polymer-Assisted Sol–Gel Freeze-Drying Method. Industrial & Engineering Chemistry Research, 2019, 58, 14106-14114. | 1.8 | 25 | | 82 | ZnO/ZnFe ₂ O ₄ Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Applied Nano Materials, 2019, 2, 4879-4890. | 2.4 | 38 | | 83 | Multifunctional NaYF4:Yb,Er@PE3@Fe3O4 nanocomposites for magnetic-field-assisted upconversion imaging guided photothermal therapy of cancer cells. Dalton Transactions, 2019, 48, 12850-12857. | 1.6 | 14 | | 84 | Polylactide nanofibers delivering doxycycline for chronic wound treatment. Materials Science and Engineering C, 2019, 104, 109745. | 3.8 | 75 | | 85 | Ultrasonic spray pyrolysis-assisted preparation of CoS for stable, uniform and efficient counter electrode in dye-sensitized solar cells. Solar Energy, 2019, 189, 398-403. | 2.9 | 6 | | 86 | Improved near-UV electroluminescence of ZnO nanorod array LEDs by coupling with a graphene plasmon layer. Nanophotonics, 2019, 8, 2203-2213. | 2.9 | 10 | | 87 | Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 1592-1596. | 2.7 | 10 | | 88 | Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sensors and Actuators B: Chemical, 2019, 285, 495-503. | 4.0 | 82 | | 89 | Enhancing the Intrinsic Stretchability of Micropatterned Gold Film by Covalent Linkage of Carbon
Nanotubes for Wearable Electronics. ACS Applied Electronic Materials, 2019, 1, 1295-1303. | 2.0 | 12 | | 90 | Memristors with organicâ€inorganic halide perovskites. InformaÄnÃ-Materiály, 2019, 1, 183-210. | 8.5 | 111 | | # | Article | IF | Citations | |-----|--|------|-----------| | 91 | Direct Z-scheme heterostructure of p-CuAl2O4/n-Bi2WO6 composite nanofibers for efficient overall water splitting and photodegradation. Journal of Colloid and Interface Science, 2019, 550, 170-179. | 5.0 | 71 | | 92 | Reusable and Flexible g-C ₃ 9O ₄ /Polyacrylonitrile Heterojunction Nanofibers for Photocatalytic Dye Degradation and Oxygen Evolution. ACS Applied Nano Materials, 2019, 2, 3081-3090. | 2.4 | 58 | | 93 | Analog–Digital Hybrid Memristive Devices for Image Pattern Recognition with Tunable Learning Accuracy and Speed. Small Methods, 2019, 3, 1900160. | 4.6 | 31 | | 94 | Engineering fluorescence intensity and electron concentration of monolayer MoS ₂ by forming heterostructures with semiconductor dots. Nanoscale, 2019, 11, 6544-6551. | 2.8 | 14 | | 95 | Construction of hierarchical hetero-structured TiO2 photoanodes for dye-sensitized solar energy conversion: Case study of anatase nanobranches on rutile nanorod arrays. Chemical Physics, 2019, 522, 129-133. | 0.9 | 7 | | 96 | Nature of vacuum-deposited electrode induced thermal irradiation damage on organic transistors. Applied Surface Science, 2019, 480, 523-528. | 3.1 | 13 | | 97 | A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example. Carbohydrate Polymers, 2019, 215, 130-136. | 5.1 | 31 | | 98 | Interface engineering of solution-grown silver nanofiber networks designed as flexible transparent electrodes. Journal of Materials Chemistry C, 2019, 7, 3924-3933. | 2.7 | 11 | | 99 | Flexible, Conformal Organic Synaptic Transistors on Elastomer for Biomedical Applications. Advanced Functional Materials, 2019, 29, 1901107. | 7.8 | 61 | | 100 | Dielectric Selection for Solutionâ€Processed Highâ€Mobility TIPSâ€Pentacene Microwire Fieldâ€Effect
Transistors. Advanced Materials Interfaces, 2019, 6, 1801984. | 1.9 | 17 | | 101 | A
photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array. Journal of Materials Chemistry C, 2019, 7, 5385-5393. | 2.7 | 46 | | 102 | A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on a single organic transistor. Materials Horizons, 2019, 6, 717-726. | 6.4 | 60 | | 103 | Low surface energy interface-derived low-temperature recrystallization behavior of organic thin films for boosting carrier mobility. Journal of Materials Chemistry C, 2019, 7, 13778-13785. | 2.7 | 5 | | 104 | A comparison of computational equations for understanding the effect of adhesion energy on mobility of DNTT thin-film transistors. Modern Physics Letters B, 2019, 33, 1950282. | 1.0 | 2 | | 105 | Insertion of Nanoscale AgInSbTe Layer between the Ag Electrode and the CH ₃ NH ₃ Pbl ₃ Electrolyte Layer Enabling Enhanced Multilevel Memory. ACS Applied Nano Materials, 2019, 2, 307-314. | 2.4 | 26 | | 106 | Revisiting cocatalyst/TiO2 photocatalyst in blue light photothermalcatalysis. Catalysis Today, 2019, 335, 286-293. | 2.2 | 16 | | 107 | TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam.
Applied Catalysis B: Environmental, 2019, 243, 760-770. | 10.8 | 132 | | 108 | An infrared IgG immunoassay based on the use of a nanocomposite consisting of silica coated Fe3O4 superparticles. Mikrochimica Acta, 2019, 186, 99. | 2.5 | 5 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 109 | Cyclingâ€Induced Degradation of Organic–Inorganic Perovskiteâ€Based Resistive Switching Memory.
Advanced Materials Technologies, 2019, 4, 1800238. | 3.0 | 47 | | 110 | Biodegradable Natural Pectinâ€Based Flexible Multilevel Resistive Switching Memory for Transient Electronics. Small, 2019, 15, e1803970. | 5.2 | 109 | | 111 | Graphene-oxide/TiO2 nanocomposite films with electron-donors for multicolor holography. Optics Express, 2019, 27, 1740. | 1.7 | 3 | | 112 | Bi-photonic reduction of anisotropic Ag nanoparticles for color-tunable hologram reconstruction. Optics Express, 2019, 27, 11991. | 1.7 | 4 | | 113 | Recent Advances in Magnetic Upconversion Nanocomposites for Bioapplications. Current Pharmaceutical Design, 2019, 25, 2007-2015. | 0.9 | 5 | | 114 | An "off-on―colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Mikrochimica Acta, 2018, 185, 211. | 2.5 | 21 | | 115 | Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sensors and Actuators B: Chemical, 2018, 258, 436-446. | 4.0 | 61 | | 116 | Complementary Resistive Switching Observed in Graphene Oxide-Based Memory Device. IEEE Electron Device Letters, 2018, 39, 488-491. | 2.2 | 25 | | 117 | Analytical Modeling of Organic–Inorganic CH ₃ NH ₃ Pbl ₃ Perovskite Resistive Switching and its Application for Neuromorphic Recognition. Advanced Theory and Simulations, 2018, 1, 1700035. | 1.3 | 35 | | 118 | Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al 2 O 3 interlayer. Chinese Physics B, 2018, 27, 018503. | 0.7 | 7 | | 119 | Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons. ACS Applied Materials & Diterfaces, 2018, 10, 15812-15819. | 4.0 | 36 | | 120 | Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. Journal of Colloid and Interface Science, 2018, 525, 187-195. | 5.0 | 40 | | 121 | Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors.
ACS Applied Materials & Samp; Interfaces, 2018, 10, 15943-15951. | 4.0 | 35 | | 122 | Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity. Materials Chemistry and Physics, 2018, 214, 507-515. | 2.0 | 35 | | 123 | Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method. Journal of Materials Science: Materials in Electronics, 2018, 29, 9605-9612. | 1.1 | 4 | | 124 | Effect of the Deformation State on the Response of a Flexible H ₂ S Sensor Based on a Ph5T2 Single-Crystal Transistor. IEEE Electron Device Letters, 2018, 39, 119-122. | 2.2 | 17 | | 125 | Molybdenum diselenide nanosheet/carbon nanofiber heterojunctions: Controllable fabrication and enhanced photocatalytic properties with a broad-spectrum response from visible to infrared light. Journal of Colloid and Interface Science, 2018, 518, 1-10. | 5.0 | 28 | | 126 | Accurate identification of layer number for few-layer WS ₂ and WSe ₂ via spectroscopic study. Nanotechnology, 2018, 29, 124001. | 1.3 | 52 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 127 | Oxidized carbon quantum dot–graphene oxide nanocomposites for improving data retention of resistive switching memory. Journal of Materials Chemistry C, 2018, 6, 2026-2033. | 2.7 | 36 | | 128 | Heterojunction of <i>g</i> -C3N4/BiOI Immobilized on Flexible Electrospun Polyacrylonitrile Nanofibers: Facile Preparation and Enhanced Visible Photocatalytic Activity for Floating Photocatalysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 2316-2323. | 3.2 | 132 | | 129 | Ultrasensitive Flexible Proximity Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Company (1988) (1988) Materials & Company (1988) (1988) Materials & Company (1988) (| 4.0 | 51 | | 130 | Cross-Linked Pectin Nanofibers with Enhanced Cell Adhesion. Biomacromolecules, 2018, 19, 490-498. | 2.6 | 58 | | 131 |
Ultra-facile and rapid colorimetric detection of Cu ²⁺ with branched polyethylenimine in 100% aqueous solution. Analyst, The, 2018, 143, 409-414. | 1.7 | 28 | | 132 | Improved switching reliability achieved in HfOx based RRAM with mountain-like surface-graphited carbon layer. Applied Surface Science, 2018, 440, 107-112. | 3.1 | 16 | | 133 | Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscale, 2018, 10, 3613-3620. | 2.8 | 24 | | 134 | Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties. Journal of Colloid and Interface Science, 2018, 516, 110-120. | 5.0 | 42 | | 135 | Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions. Applied Catalysis B: Environmental, 2018, 234, 79-89. | 10.8 | 46 | | 136 | Global Control of CH ₃ NH ₃ Pbl ₃ Formation with Multifunctional lonic Liquid for Perovskite Hybrid Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 10699-10705. | 1.5 | 26 | | 137 | Bi2WO6/ZnFe2O4 heterostructures nanofibers: Enhanced visible-light photocatalytic activity and magnetically separable property. Materials Research Bulletin, 2018, 104, 124-133. | 2.7 | 34 | | 138 | Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal. Applied Physics Express, 2018, 11, 036502. | 1.1 | 3 | | 139 | Fluorescent Holographic Fringes with a Surface Relief Structure Based on Merocyanine Aggregation Driven by Blue-violet Laser. Scientific Reports, 2018, 8, 3818. | 1.6 | 10 | | 140 | Solution-Processed Single-Crystal Array for High-Performance Conformable Transistors. IEEE Electron Device Letters, 2018, 39, 595-598. | 2.2 | 11 | | 141 | Magnetically separable Bi2MoO6/ZnFe2O4 heterostructure nanofibers: Controllable synthesis and enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2018, 747, 916-925. | 2.8 | 50 | | 142 | Minimization of defects in Nb-doped TiO 2 photocatalysts by molten salt flux. Ceramics International, 2018, 44, 10249-10257. | 2.3 | 8 | | 143 | Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: Controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. Journal of Hazardous Materials, 2018, 344, 113-122. | 6.5 | 116 | | 144 | Electrospun CuAl ₂ O ₄ hollow nanofibers as visible light photocatalyst with enhanced activity and excellent stability under acid and alkali conditions. CrystEngComm, 2018, 20, 312-322. | 1.3 | 18 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 145 | Magnetic Upconversion Luminescent Nanocomposites with Small Size and Strong
Super-Paramagnetism: Polyelectrolyte-Mediated Multimagnetic-Beads Embedding. ACS Applied Nano
Materials, 2018, 1, 145-151. | 2.4 | 11 | | 146 | Improved Uniformity and Endurance Through Suppression of Filament Overgrowth in Electrochemical Metallization Memory With AgInSbTe Buffer Layer. IEEE Journal of the Electron Devices Society, 2018, 6, 714-720. | 1.2 | 26 | | 147 | Intensity-modulated LED achieved through integrating p-GaN/n-ZnO heterojunction with multilevel RRAM. Applied Physics Letters, 2018, 113, . | 1.5 | 13 | | 148 | Ultrathin Air-Stable n-Type Organic Phototransistor Array for Conformal Optoelectronics. Scientific Reports, 2018, 8, 16612. | 1.6 | 25 | | 149 | Enhanced Full-Spectrum-Response Photocatalysis and Reusability of MoSe ₂ via Hierarchical N-Doped Carbon Nanofibers as Heterostructural Supports. ACS Sustainable Chemistry and Engineering, 2018, 6, 14314-14322. | 3.2 | 16 | | 150 | Conformable n -channel Organic Phototransistors with Enhanced Photosensitivity and Broadened Response Range via Insertion of an Alq3 Layer. IEEE Electron Device Letters, 2018, , 1-1. | 2.2 | 0 | | 151 | Transferable and Flexible Artificial Memristive Synapse Based on WO <i>_x</i> Schottky Junction on Arbitrary Substrates. Advanced Electronic Materials, 2018, 4, 1800373. | 2.6 | 58 | | 152 | Structural Optimization of Oxide/Metal/Oxide Transparent Conductors for Highâ€Performance Lowâ€Emissivity Heaters. Advanced Materials Interfaces, 2018, 5, 1801287. | 1.9 | 14 | | 153 | Solutionâ€Grown Serpentine Silver Nanofiber Meshes for Stretchable Transparent Conductors.
Advanced Electronic Materials, 2018, 4, 1800346. | 2.6 | 15 | | 154 | Laser-induced formation of Au/Pt nanorods with peroxidase mimicking and SERS enhancement properties for application to the colorimetric determination of $H2O2$. Mikrochimica Acta, 2018 , 185 , 445 . | 2.5 | 23 | | 155 | SiO ₂ aerogel monolith allows ultralow amounts of TiO ₂ for the fast and efficient removal of gaseous pollutants. Dalton Transactions, 2018, 47, 13608-13615. | 1.6 | 14 | | 156 | Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS ₂ /Au structure for multilevel flexible memory. Journal of Materials Chemistry C, 2018, 6, 7195-7200. | 2.7 | 63 | | 157 | Immobilization of ultrafine Ag nanoparticles on well-designed hierarchically porous silica for high-performance catalysis. Journal of Colloid and Interface Science, 2018, 530, 345-352. | 5.0 | 19 | | 158 | High-temperature driven inter-valley carrier transfer and significant fluorescence enhancement in multilayer WS ₂ . Nanoscale Horizons, 2018, 3, 598-605. | 4.1 | 13 | | 159 | Photocatalytic Reduction of Graphene Oxide–TiO ₂ Nanocomposites for Improving
Resistiveâ€Switching Memory Behaviors. Small, 2018, 14, e1801325. | 5.2 | 58 | | 160 | UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors. Optical Materials Express, 2018, 8, 1143. | 1.6 | 10 | | 161 | Graphite Microislands Prepared for Reliability Improvement of Amorphous Carbon Based Resistive
Switching Memory. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800285. | 1.2 | 12 | | 162 | Highâ€Performance, Ultrathin, Ultraflexible Organic Thinâ€Film Transistor Array Via Solution Process. Small, 2018, 14, e1801020. | 5.2 | 75 | | # | Article | IF | CITATIONS | |-----|---|--------------|-----------| | 163 | Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydrate Polymers, 2018, 199, 68-74. | 5.1 | 33 | | 164 | Highly uniform switching of HfO2â^'x based RRAM achieved through Ar plasma treatment for low power and multilevel storage. Applied Surface Science, 2018, 458, 216-221. | 3.1 | 39 | | 165 | lonic Liquidâ€Assisted Improvements in the Thermal Stability of CH ₃ NH ₃ Pol ₃ Perovskite Photovoltaics. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800130. | 1.2 | 27 | | 166 | The Nature of Lithiumâ€lon Transport in Low Power Consumption LiFePO ₄ Resistive Memory with Graphite as Electrode. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800320. | 1.2 | 11 | | 167 | Stretchable and conformable synapse memristors for wearable and implantable electronics. Nanoscale, 2018, 10, 18135-18144. | 2.8 | 78 | | 168 | The Auger process in multilayer WSe ₂ crystals. Nanoscale, 2018, 10, 17585-17592. | 2.8 | 20 | | 169 | Flexible, high-sensitive, and wearable strain sensor based on organic crystal for human motion detection. Organic Electronics, 2018, 61, 304-311. | 1.4 | 32 | | 170 | Interface State-Induced Negative Differential Resistance Observed in Hybrid Perovskite Resistive Switching Memory. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21755-21763. | 4.0 | 74 | | 171 | Graphitic carbon nitride/BiOI loaded on electrospun silica nanofibers with enhanced photocatalytic activity. Applied Surface Science, 2018, 455, 952-962. | 3.1 | 46 | | 172 | Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye-sensitized solar cells. Scientific Reports, 2018, 8, 8714. | 1.6 | 24 | | 173 | Ultrathin Free-Substrate n-Type PTCDI-C13 Transistors With Bilayer Polymer Dielectrics. IEEE Electron Device Letters, 2018, 39, 1183-1186. | 2.2 | 8 | | 174 | Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability. Journal of Colloid and Interface Science, 2018, 529, 404-414. | 5.0 | 99 | | 175 | Assembling n-Bi ₂ MoO ₆ Nanosheets on Electrospun p-CuAl ₂ O ₄ Hollow Nanofibers: Enhanced Photocatalytic Activity Based on Highly Efficient Charge Separation and Transfer. ACS Sustainable Chemistry and Engineering, 2018, 6, 10714-10723. | 3.2 | 59 | | 176 | Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Applied Surface Science, 2017, 402, 86-91. | 3.1 | 12 | | 177 | Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer. Applied Surface Science, 2017, 403, 389-395. | 3.1 | 34 | | 178 | Upconversion luminescence enhancement in NaYF4: Yb3+, Er3+ nanoparticles induced by Cd2+ tridoping. Materials Research Bulletin, 2017, 90, 151-155. | 2.7 | 13 | | 179 | Enhancement of Exciton Emission from Multilayer MoS ₂ at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157. | 5 . 2 | 19 | | 180 | Enhanced near-UV electroluminescence from p-GaN/i-Al ₂ O ₃ /n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing
surface plasmons of Ag nanowires. Journal of Materials Chemistry C, 2017, 5, 3288-3295. | 2.7 | 40 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 181 | Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer. Applied Physics Letters, 2017, 110, . | 1.5 | 13 | | 182 | The detection of copper ions based on photothermal effect of cysteine modified Au nanorods. Sensors and Actuators B: Chemical, 2017, 248, 761-768. | 4.0 | 20 | | 183 | Sp ² clustering-induced improvement of resistive switching uniformity in Cu/amorphous carbon/Pt electrochemical metallization memory. Journal of Materials Chemistry C, 2017, 5, 5420-5425. | 2.7 | 26 | | 184 | Deposition of Pentacene Thin Film on Polydimethylsiloxane Elastic Dielectric Layer for Flexible Thin-Film Transistors. IEEE Electron Device Letters, 2017, 38, 1031-1034. | 2.2 | 15 | | 185 | Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer. Solar Energy Materials and Solar Cells, 2017, 169, 264-269. | 3.0 | 29 | | 186 | p-NiO/n+-Si single heterostructure for one diode-one resistor memory applications. Journal of Alloys and Compounds, 2017, 721, 520-524. | 2.8 | 11 | | 187 | Adsorption Energy Optimization of Co ₃ O ₄ through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 12524-12530. | 1.5 | 23 | | 188 | Controllable gas selectivity at room temperature based on Ph5T2-modified CuPc nanowire field-effect transistors. Organic Electronics, 2017, 48, 68-76. | 1.4 | 20 | | 189 | Size-Tunable Low Molecular Weight Pectin-Based Electrospun Nanofibers Blended with Low Content of Poly(ethylene oxide). Journal of Nanoscience and Nanotechnology, 2017, 17, 681-689. | 0.9 | 8 | | 190 | SERS-active liposome@Ag/Au nanocomposite for NIR light-driven drug release. Colloids and Surfaces B: Biointerfaces, 2017, 154, 150-159. | 2.5 | 19 | | 191 | The W@WO ₃ ohmic contact induces a high-efficiency photooxidation performance. Dalton Transactions, 2017, 46, 1487-1494. | 1.6 | 18 | | 192 | Transparent Nb-doped TiO ₂ films with the [001] preferred orientation for efficient photocatalytic oxidation performance. Dalton Transactions, 2017, 46, 15363-15372. | 1.6 | 13 | | 193 | Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons. Nanoscale, 2017, 9, 14592-14601. | 2.8 | 38 | | 194 | High-Response Identifiable Gas Sensor Based on a Gas-Dielectric ZnPc Nanobelt FET. IEEE Electron Device Letters, 2017, 38, 1586-1589. | 2.2 | 18 | | 195 | Controlled Gas Molecules Doping of Monolayer MoS ₂ via Atomic-Layer-Deposited Al ₂ O ₃ Films. ACS Applied Materials & amp; Interfaces, 2017, 9, 27402-27408. | 4.0 | 23 | | 196 | Octahedral-Like CuO/In ₂ O ₃ Mesocages with Double-Shell Architectures: Rational Preparation and Application in Hydrogen Sulfide Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44632-44640. | 4.0 | 46 | | 197 | Enhanced Electroluminescence from ZnO Quantum Dot Lightâ€Emitting Diodes via Introducing Al ₂ O ₃ Retarding Layer and Ag@ZnO Hybrid Nanodots. Advanced Optical Materials, 2017, 5, 1700493. | 3.6 | 21 | | 198 | Conformal transistor arrays based on solution-processed organic crystals. Scientific Reports, 2017, 7, 15367. | 1.6 | 14 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 199 | Photolithography-compatible conformal electrodes for high-performance bottom-contact organic single-crystal transistors. Journal of Materials Chemistry C, 2017, 5, 12699-12706. | 2.7 | 21 | | 200 | Improved resistive switching reliability by using dual-layer nanoporous carbon structure. Applied Physics Letters, 2017, 111, . | 1.5 | 25 | | 201 | Vertical Bi ₂ Se ₃ flake array as a Pt-free counter electrode for dye-sensitized solar cells. RSC Advances, 2017, 7, 51958-51964. | 1.7 | 4 | | 202 | Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydrate Polymers, 2017, 174, 591-600. | 5.1 | 59 | | 203 | Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydrate Polymers, 2017, 157, 766-774. | 5.1 | 83 | | 204 | Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Applied Surface Science, 2017, 391, 654-661. | 3.1 | 85 | | 205 | A facile fabrication of nitrogen-doped electrospun In 2 O 3 nanofibers with improved visible-light photocatalytic activity. Applied Surface Science, 2017, 391, 668-676. | 3.1 | 40 | | 206 | Flexible Organic Single-Crystal Field-Effect Transistor for Ultra-Sensitivity Strain Sensing. IEEE Electron Device Letters, 2017, 38, 1598-1601. | 2.2 | 24 | | 207 | Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction. Optics Express, 2017, 25, 31253. | 1.7 | 6 | | 208 | 320-nm Flexible Solution-Processed 2,7-dioctyl $[1]$ benzothieno $[3,2-b]$ benzothiophene Transistors. Materials, 2017, 10, 918. | 1.3 | 14 | | 209 | Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage. Applied Optics, 2017, 56, 7892. | 0.9 | 2 | | 210 | Nonvolatile plasmonic holographic memory based on photo-driven ion migration. Applied Optics, 2017, 56, 6942. | 0.9 | 4 | | 211 | Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceramics International, 2017, 43, 15699-15707. | 2.3 | 34 | | 212 | Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity. Materials, 2016, 9, 90. | 1.3 | 35 | | 213 | A Single Nanobelt Transistor for Gas Identification: Using a Gas-Dielectric Strategy. Sensors, 2016, 16, 917. | 2.1 | 4 | | 214 | Transport in organic single-crystal microbelt for conformal electronics. Applied Physics Letters, 2016, 108, . | 1.5 | 8 | | 215 | Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments. Chinese Physics B, 2016, 25, 127303. | 0.7 | 18 | | 216 | Organic single-crystal transistors and circuits on ultra-fine Au wires with diameters as small as 15 \hat{l} 4m via jigsaw puzzle method. IEEE Electron Device Letters, 2016, , 1-1. | 2.2 | 0 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 217 | CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceramics International, 2016, 42, 11285-11293. | 2.3 | 69 | | 218 | Enhanced photoelectrochemical performance of nanoporous BiVO4 photoanode by combining surface deposited cobalt-phosphate with hydrogenation treatment. Electrochimica Acta, 2016, 195, 51-58. | 2.6 | 66 | | 219 | Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al ₂ O ₃ . Journal of Nanoscience and Nanotechnology, 2016, 16, 3811-3815. | 0.9 | 0 | | 220 | Improved Mobility and Bias Stability of Thin Film Transistors Using the Double-Layer a-InGaZnO/a-InGaZnO:N Channel. Journal of Nanoscience and Nanotechnology, 2016, 16, 3659-3663. | 0.9 | 0 | | 221 | Facile in situ synthesis of plasmonic nanoparticles-decorated g-C ₃ N ₄ /TiO ₂ heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H ₂ evolution. Nanoscale, 2016, 8. 11034-11043. | 2.8 | 204 | | 222 | Abnormal high-temperature luminescence enhancement observed in monolayer MoS ₂ flakes: thermo-driven transition from negatively charged trions to neutral excitons. Journal of Materials Chemistry C, 2016, 4, 9187-9196. | 2.7 | 15 | | 223 | Increased openâ€circuit voltage of ZnO nanowire/PbS quantum dot bulk heterojunction solar cells with solutionâ€deposited Mg(OH) ₂ interlayer. Physica Status Solidi - Rapid Research Letters, 2016, 10, 745-748. | 1.2 | 19 | | 224 | Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. Journal of Power Sources, 2016, 329, 516-524. | 4.0 | 44 | | 225 | Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. Journal Physics D: Applied Physics, 2016, 49, 325103. | 1.3 | 25 | | 226 | Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers. International Journal of Pharmaceutics, 2016, 512, 204-212. | 2.6 | 14 | | 227 | Room temperature immobilized BiOI nanosheets on flexible electrospun polyacrylonitrile nanofibers with high visible-light photocatalytic activity. Journal of Sol-Gel Science and Technology, 2016, 80, 783-792. | 1.1 | 12 | | 228 | Solvent-Induced Luminescence Variation of Upconversion Nanoparticles. Langmuir, 2016, 32, 13200-13206. | 1.6 | 21 | | 229 | A Glucose Biosensor Based on Detecting Longitudinal Surface Plasmon Resonance of Gold Nanorods. Journal of Nanoscience and Nanotechnology, 2016, 16, 6925-6929. | 0.9 | 3 | | 230 | Reliability Improvement of Amorphous Carbon Based
Resistive Switching Memory by Inserting Nanoporous Layer. IEEE Electron Device Letters, 2016, 37, 1430-1433. | 2.2 | 21 | | 231 | Bright and High-Color-Rendering White Light-Emitting Diode Using Color-Tunable Oxychloride and Oxyfluoride Phosphors. Journal of Physical Chemistry C, 2016, 120, 18713-18720. | 1.5 | 27 | | 232 | Label-Free Detection of Bovine Serum Albumin Protein Based on SiO ₂ /Au Nanoshells as Near-Infrared Surface-Enhanced Raman Spectroscopy Nanoprobe. Journal of Nanoscience and Nanotechnology, 2016, 16, 7103-7109. | 0.9 | 2 | | 233 | Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory. Scientific Reports, 2016, 6, 36701. | 1.6 | 22 | | 234 | Enhanced Ultraviolet Random Lasing from Au/MgO/ZnO Heterostructure by Introducing p-Cu ₂ O Hole-Injection Layer. ACS Applied Materials & Interfaces, 2016, 8, 31485-31490. | 4.0 | 13 | | # | Article | IF | CITATIONS | |-----|--|-------------|-----------| | 235 | Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles. Analytical and Bioanalytical Chemistry, 2016, 408, 5013-5019. | 1.9 | 18 | | 236 | 3D MoS 2 nanosheet/TiO 2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. Journal of Alloys and Compounds, 2016, 686, 137-144. | 2.8 | 69 | | 237 | Electrospun Carbon Nanofibers/Carbon Nanotubes/Polyaniline Ternary Composites with Enhanced Electrochemical Performance for Flexible Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 1689-1696. | 3.2 | 90 | | 238 | Organic Single-Crystal Nanowire Transistor Fabricated by Glass Fiber Mask Method. IEEE Transactions on Electron Devices, 2016, 63, 787-792. | 1.6 | 2 | | 239 | Influence of a solution-deposited rutile layer on the morphology of TiO ₂ nanorod arrays and the performance of nanorod-based dye-sensitized solar cells. RSC Advances, 2016, 6, 10450-10455. | 1.7 | 10 | | 240 | Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO 2 /Pt memory device. Applied Surface Science, 2016, 360, 338-341. | 3.1 | 21 | | 241 | Brush-controlled oriented growth of TCNQ microwire arrays for field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 433-439. | 2.7 | 13 | | 242 | Highly stable copper wire/alumina/polyimide composite films for stretchable and transparent heaters. Journal of Materials Chemistry C, 2016, 4, 3581-3591. | 2.7 | 66 | | 243 | Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. Journal of Materials Chemistry A, 2016, 4, 4180-4187. | 5. 2 | 203 | | 244 | Ultrasonic spray pyrolysis assembly of a TiO2â€"WO3â€"Pt multi-heterojunction microsphere photocatalyst using highly crystalline WO3 nanosheets: less is better. New Journal of Chemistry, 2016, 40, 3225-3232. | 1.4 | 8 | | 245 | Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. Journal of Materials Chemistry A, 2016, 4, 5623-5631. | 5.2 | 89 | | 246 | A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light: Science and Applications, 2016, 5, e16024-e16024. | 7.7 | 289 | | 247 | Highly sensitive H2S sensors based on ultrathin organic single-crystal microplate transistors. Organic Electronics, 2016, 32, 94-99. | 1.4 | 14 | | 248 | Flexible transparent heaters based on silver nanotrough meshes. Journal of Alloys and Compounds, 2016, 664, 764-769. | 2.8 | 29 | | 249 | Plasma treatment introduced memory properties in MoS2field-effect transistors. Applied Physics Express, 2016, 9, 014202. | 1.1 | 5 | | 250 | Effect of SiO ₂ Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1653-1660. | 4.0 | 49 | | 251 | Electronic and optoelectronic properties of zinc phthalocyanine single-crystal nanobelt transistors. Organic Electronics, 2016, 30, 158-164. | 1.4 | 16 | | 252 | Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy, 2016, 95, 233-241. | 4.5 | 122 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 253 | Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. Materials Science and Engineering C, 2016, 59, 885-893. | 3.8 | 47 | | 254 | Forming-free electrochemical metallization resistive memory devices based on nanoporous TiO \times N y thin film. Journal of Alloys and Compounds, 2016, 656, 612-617. | 2.8 | 28 | | 255 | Gate-modulated transport properties and mechanism for nanowire cross junction based on SnO2 semiconductor. Applied Physics Letters, 2015, 107, 233503. | 1.5 | 5 | | 256 | Effect of reset voltage polarity on the resistive switching region of unipolar memory. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2255-2261. | 0.8 | 3 | | 257 | Waferâ€Scale Coplanar Electrodes for 3D Conformal Organic Singleâ€Crystal Circuits. Advanced Electronic Materials, 2015, 1, 1500239. | 2.6 | 26 | | 258 | Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films. Applied Surface Science, 2015, 357, 2048-2054. | 3.1 | 10 | | 259 | Photocatalytic film of BiOCl honeycomb array from anodic aluminium oxide template. Materials Technology, 2015, 30, A84-A88. | 1.5 | 2 | | 260 | Two-step vapor transport deposition of large-size bridge-like Bi ₂ Se ₃ nanostructures. CrystEngComm, 2015, 17, 8449-8456. | 1.3 | 3 | | 261 | Green electroluminescence from p-ZnO:N/n-GaN heterojunction light-emitting diodes. Materials Research Express, 2015, 2, 025901. | 0.8 | 0 | | 262 | Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. Journal of Materials Chemistry A, 2015, 3, 3281-3284. | 5.2 | 113 | | 263 | Improvement of resistive switching memory achieved by using arc-shaped bottom electrode. Applied Physics Express, 2015, 8, 014101. | 1.1 | 15 | | 264 | Modulation of electron transportation in amorphous and polycrystalline indium–zinc-oxide films grown by pulse laser deposition. Journal of Non-Crystalline Solids, 2015, 423-424, 18-24. | 1.5 | 5 | | 265 | Individual single-crystal nanowires as electrodes for organic single-crystal nanodevices. Journal of Materials Chemistry C, 2015, 3, 9534-9539. | 2.7 | 4 | | 266 | Defect-Induced Yellow Color in Nb-Doped TiO ₂ and Its Impact on Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2015, 119, 16623-16632. | 1.5 | 142 | | 267 | Efficiency enhanced rutile TiO2 nanowire solar cells based on an Sb2S3 absorber and a Cul hole conductor. New Journal of Chemistry, 2015, 39, 7243-7250. | 1.4 | 7 | | 268 | Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO ₂ Nanocomposite Films. Journal of Physical Chemistry C, 2015, 119, 18559-18566. | 1.5 | 17 | | 269 | Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers. Electrochimica Acta, 2015, 176, 293-300. | 2.6 | 46 | | 270 | Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO ₂ (B) nanotube heterojunction. Dalton Transactions, 2015, 44, 13331-13339. | 1.6 | 29 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 271 | Interplay between Static and Dynamic Energy Transfer in Biofunctional Upconversion Nanoplatforms. Journal of Physical Chemistry Letters, 2015, 6, 2518-2523. | 2.1 | 39 | | 272 | Improved resistive switching characteristics by introducing Ag-nanoclusters in amorphous-carbon memory. Materials Letters, 2015, 154, 98-102. | 1.3 | 17 | | 273 | Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon, 2015, 91, 38-44. | 5.4 | 90 | | 274 | The effect of Au nanoshells with controllable aggregation on SERS enhancement. Materials Research Express, 2015, 2, 045004. | 0.8 | 1 | | 275 | Simple Ethanol Impregnation Treatment Can Enhance Photocatalytic Activity of TiO ₂ Nanoparticles under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2015, 7, 7752-7758. | 4.0 | 78 | | 276 | Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity. Catalysis Communications, 2015, 67, 6-10. | 1.6 | 70 | | 277 | Size-controlled ambipolar graphene nanoribbon transistors by an all-dry mask method. Synthetic Metals, 2015, 205, 6-10. | 2.1 | 2 | | 278 | Bilayer TiO ₂ photoanode consisting of a nanowireâ€"nanoparticle bottom layer and a spherical voids scattering layer for dye-sensitized solar cells. New Journal of Chemistry, 2015, 39, 4845-4851. | 1.4 | 23 | | 279 | TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 717-721. | 7.1 | 16 | | 280 | Bismuth oxychloride/carbon nanofiber heterostructures for the degradation of 4-nitrophenol.
CrystEngComm, 2015, 17, 7276-7282. | 1.3 | 20 | | 281 | Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. Applied Surface Science, 2015, 358, 28-45. | 3.1 | 115 | | 282 | Bias-polarity-dependent UV/visible transferable electroluminescence from ZnO nanorod array LED with graphene oxide electrode supporting layer. Applied Physics Express, 2015, 8, 095202. | 1.1 | 5 | | 283 | Targeted labeling of an early-stage tumor spheroid in a chorioallantoic membrane model with upconversion nanoparticles. Nanoscale, 2015, 7, 1596-1600. | 2.8 | 11 | | 284 | Highly photosensitive thienoacene single crystal microplate transistors via optimized dielectric. Organic Electronics, 2015, 16, 171-176. | 1.4 | 19 | | 285 | Two-wavelength exposure enhancement in holographic data storage of spirooxazine-doped polymers. Optics Communications, 2015, 338, 269-276. | 1.0 | 6 | | 286 | Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons. Nanoscale, 2015, 7, 1073-1080. | 2.8 | 53 | | 287 | In2S3/carbon nanofibers/Au ternary synergetic system: Hierarchical assembly and enhanced visible-light photocatalytic activity. Journal of Hazardous Materials, 2015, 283, 599-607. | 6.5 | 43 | | 288 | Au/Ag nanoalloy shells as near-infrared SERS nanoprobe for the detection of protein. Materials Research Express, 2014, 1, 045408. | 0.8 | 7 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 289 | One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection. Sensors, 2014, 14, 13999-14020. | 2.1 | 57 | | 290 | ZnO ultraviolet random laser diode on metal copper substrate. Optics Express, 2014, 22, 16731. | 1.7 | 49 | | 291 | Significant Enhancement of Yellow–Green Light Emission of TiO ₂ Thin Films
Using Au Localized Surface Plasmons: Effect of Dielectric MgO Spacer Layer Thickness. Journal of
Nanoscience and Nanotechnology, 2014, 14, 3748-3752. | 0.9 | 1 | | 292 | Conductive SnO2:Sb nanobelts as electrodes for detection of NO2 in ppb level with ultrahigh sensitivity. Applied Physics Letters, 2014, 104, . | 1.5 | 15 | | 293 | Oxygen-concentration effect on p-type CuAlOx resistive switching behaviors and the nature of conducting filaments. Applied Physics Letters, 2014, 104, . | 1.5 | 28 | | 294 | Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers. Applied Optics, 2014, 53, 5815. | 0.9 | 3 | | 295 | Enhanced photoelectrochemical water splitting on hematite thin film with layer-by-layer deposited ultrathin TiO2 underlayer. International Journal of Hydrogen Energy, 2014, 39, 16212-16219. | 3.8 | 49 | | 296 | Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles. Electrochimica Acta, 2014, 130, 290-295. | 2.6 | 84 | | 297 | Controllable synthesis and enhanced visible photocatalytic degradation performances of Bi2WO6–carbon nanofibers heteroarchitectures. Journal of Sol-Gel Science and Technology, 2014, 70, 149-158. | 1.1 | 12 | | 298 | TiO2 (B) nanosheets mediate phase selective synthesis of TiO2 nanostructured photocatalyst. Applied Surface Science, 2014, 292, 937-943. | 3.1 | 14 | | 299 | Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2014, 584, 180-184. | 2.8 | 39 | | 300 | Multi-heterojunction photocatalysts based on WO3 nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light. Chemical Engineering Journal, 2014, 237, 29-37. | 6.6 | 63 | | 301 | Localized resistive switching in a ZnS–Ag/ZnS double-layer memory. Journal Physics D: Applied Physics, 2014, 47, 455101. | 1.3 | 7 | | 302 | Single-crystal tetrathiafulvalene microwire arrays formed by drop-casting method in the saturated solvent atmosphere. Synthetic Metals, 2014, 198, 248-254. | 2.1 | 5 | | 303 | An ordered array based on vapor-processed phthalocyanine nanoribbons. Journal of Materials Chemistry C, 2014, 2, 5667-5672. | 2.7 | 6 | | 304 | Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method. Nanoscale, 2014, 6, 1323-1328. | 2.8 | 39 | | 305 | Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation. Nanoscale, 2014, 6, 5329. | 2.8 | 46 | | 306 | High ON/OFF ratio single crystal transistors based on ultrathin thienoacene microplates. Journal of Materials Chemistry C, 2014, 2, 5382-5388. | 2.7 | 24 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 307 | Electrospun nanofibers of p-type BiFeO ₃ /n-type TiO ₂ hetero-junctions with enhanced visible-light photocatalytic activity. RSC Advances, 2014, 4, 31941. | 1.7 | 75 | | 308 | Enhanced electrochromic properties of a TiO ₂ nanowire array via decoration with anatase nanoparticles. Journal of Materials Chemistry C, 2014, 2, 7891. | 2.7 | 47 | | 309 | Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546. | 6.0 | 5,936 | | 310 | A Highly Efficient White Light (Sr ₃ 6:Eu ²⁺ , Tb ³⁺ , Mn ²⁺ Phosphor via Dual Energy Transfers for White Light-Emitting Diodes. Inorganic Chemistry, 2014, 53, 3441-3448. | 1.9 | 141 | | 311 | Recent progress in ZnO-based heterojunction ultraviolet light-emitting devices. Science Bulletin, 2014, 59, 1219-1227. | 1.7 | 10 | | 312 | <i>p</i> -MoO ₃ Nanostructures/ <i>n</i> -TiO ₂ Nanofiber Heterojunctions:
Controlled Fabrication and Enhanced Photocatalytic Properties. ACS Applied Materials & Doubles amp;
Interfaces, 2014, 6, 9004-9012. | 4.0 | 148 | | 313 | CuO/Cu ₂ O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Advances, 2014, 4, 31056. | 1.7 | 79 | | 314 | Ultraviolet electroluminescence from Au/MgO/Mg Zn1â^'O heterojunction diodes and the observation of Zn-rich cluster emission. Journal of Luminescence, 2014, 148, 116-120. | 1.5 | 7 | | 315 | Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films. Optics Communications, $2014, 318, 1-6$. | 1.0 | 16 | | 316 | One-dimensional heterostructures of beta-nickel hydroxide nanoplates/electrospun carbon nanofibers: Controlled fabrication and high capacitive property. International Journal of Hydrogen Energy, 2014, 39, 16162-16170. | 3.8 | 14 | | 317 | Low temperature preparation and characterization of (Ga1â^'xZnx)(N1â^'yOy) alloy nanostructures using electrospun nanofibers as source materials. Ceramics International, 2014, 40, 3425-3431. | 2.3 | 5 | | 318 | Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration. Nanoscale, 2013, 5, 8634. | 2.8 | 48 | | 319 | Ultrafast Li-ion battery anode with superlong life and excellent cycling stability from strongly coupled ZnO nanoparticle/conductive nanocarbon skeleton hybrid materials. Nano Energy, 2013, 2, 579-585. | 8.2 | 92 | | 320 | Multi-wavelength holographic storage in PMMA film containing spirooxazines. Proceedings of SPIE, 2013, , . | 0.8 | 0 | | 321 | BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property. Applied Surface Science, 2013, 285, 509-516. | 3.1 | 70 | | 322 | Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications. Applied Surface Science, 2013, 280, 720-725. | 3.1 | 27 | | 323 | A multiphase strategy for realizing green cathodoluminescence in 12CaO·7Al2O3–CaCeAl3O7:Ce3+,Tb3+ conductive phosphor. Dalton Transactions, 2013, 42, 16311. | 1.6 | 21 | | 324 | Spectral modulation through controlling anions in nanocaged phosphors. Journal of Materials Chemistry C, 2013, 1, 7896. | 2.7 | 10 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 325 | Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: enhanced cell performance via the rutile–anatase heterojunction. Journal of Materials Chemistry A, 2013, 1, 3309. | 5.2 | 49 | | 326 | An electron-rich free-standing carbon@Au core–shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. Physical Chemistry Chemical Physics, 2013, 15, 10453. | 1.3 | 69 | | 327 | Formation mechanisms of multiple holographic gratings in spirooxazine-doped polymer films. Optik, 2013, 124, 139-143. | 1.4 | 7 | | 328 | Heterostructured TiO2/WO3 porous microspheres: Preparation, characterization and photocatalytic properties. Catalysis Today, 2013, 201, 195-202. | 2.2 | 118 | | 329 | Hierarchical assembly of ultrathin hexagonal SnS ₂ nanosheets onto electrospun TiO ₂ nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale, 2013, 5, 606-618. | 2.8 | 344 | | 330 | Gas Dielectric
Transistor of CuPc Single Crystalline Nanowire for SO ₂ Detection Down to Subâ€ppm Levels at Room Temperature. Advanced Materials, 2013, 25, 2269-2273. | 11.1 | 158 | | 331 | One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. Journal of Hazardous Materials, 2013, 260, 892-900. | 6.5 | 103 | | 332 | Color tuning of (K1â^'x,Nax)SrPO4:0.005Eu2+, yTb3+ blue-emitting phosphors via crystal field modulation and energy transfer. Journal of Materials Chemistry C, 2013, 1, 4570. | 2.7 | 84 | | 333 | Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters. Nanoscale, 2013, 5, 4490. | 2.8 | 105 | | 334 | Detection of label-free H2O2 based on sensitive Au nanorods as sensor. Colloids and Surfaces B: Biointerfaces, 2013, 102, 327-330. | 2.5 | 28 | | 335 | Anisotropic strained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and optical properties. Applied Physics Letters, 2013, 102, 031905. | 1.5 | 11 | | 336 | Eu ²⁺ , Tb ³⁺ , Mn ²⁺ Triactivated Ba ₃ MgSi ₂ O ₈ Red-Emitting Phosphors for Near Ultraviolet Lighting Emitting Diodes. ECS Journal of Solid State Science and Technology, 2013, 2, R213-R217. | 0.9 | 8 | | 337 | Origin of ultraviolet electroluminescence in $\langle i \rangle n < i \rangle -ZnO < i \rangle p < i \rangle -GaN$ and $\langle i \rangle n < i \rangle -MgZnO < i \rangle p < i \rangle -GaN heterojunction light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2751-2755.$ | 0.8 | 6 | | 338 | Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide–Ag nanoparticles film. RSC Advances, 2013, 4, 2404-2408. | 1.7 | 25 | | 339 | Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO ₂ nanocomposite films. Applied Optics, 2012, 51, 3357. | 0.9 | 19 | | 340 | Effect of oxygen-related surface adsorption on the efficiency and stability of ZnO nanorod array ultraviolet light-emitting diodes. Applied Physics Letters, $2012,100,$. | 1.5 | 42 | | 341 | The infrared fingerprint signals of silica nanoparticles and its application in immunoassay. Applied Physics Letters, 2012, 100, 013701. | 1.5 | 28 | | 342 | Multiplexed holographic gratings recorded by 405nm laser in polymer film containing spirooxazines. Proceedings of SPIE, 2012, , . | 0.8 | 1 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 343 | Up-Conversion Luminescence of NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles Embedded into PVP Nanotubes with Controllable Diameters. Journal of Physical Chemistry C, 2012, 116, 5787-5791. | 1.5 | 43 | | 344 | In ₂ O ₃ nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity. Journal of Materials Chemistry, 2012, 22, 1786-1793. | 6.7 | 72 | | 345 | Growth of single-crystalline rutile TiO2 nanowire array on titanate nanosheet film for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6389. | 6.7 | 62 | | 346 | Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 577-584. | 6.7 | 196 | | 347 | Localized surface plasmon-enhanced ultraviolet electroluminescence from $\langle i\rangle n < i\rangle - ZnO < i> i > i < ii > i < ii > i < ii > ii $ | 1.5 | 40 | | 348 | Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. Nanoscale, 2012, 4, 7501. | 2.8 | 82 | | 349 | Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2012, 225-226, 155-163. | 6.5 | 130 | | 350 | Controllable synthesis of Zn2TiO4@carbon core/shell nanofibers with high photocatalytic performance. Journal of Hazardous Materials, 2012, 229-230, 265-272. | 6.5 | 26 | | 351 | MgZnO/MgO strained multiple-quantum-well nanocolumnar films: Stress-induced structural transition and deep ultraviolet emission. Journal of Alloys and Compounds, 2012, 513, 399-403. | 2.8 | 10 | | 352 | Preparation and characterization of multifunctional Fe3O4/ZnO/SiO2 nanocomposites. Journal of Alloys and Compounds, 2012, 535, 91-94. | 2.8 | 5 | | 353 | The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 405, 1-5. | 2.3 | 19 | | 354 | Enhancement of the Visible-Light Photocatalytic Activity of In ₂ O ₃ â€"TiO ₂ Nanofiber Heteroarchitectures. ACS Applied Materials & Diterraces, 2012, 4, 424-430. | 4.0 | 320 | | 355 | Single-phased white-emitting 12CaO·7Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays. Journal of Materials Chemistry, 2012, 22, 16839. | 6.7 | 58 | | 356 | Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silicananotubes for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry, 2012, 22, 1387-1395. | 6.7 | 251 | | 357 | In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. Journal of Hazardous Materials, 2012, 237-238, 331-338. | 6.5 | 113 | | 358 | Low-temperature, catalyst-free vapor–solid growth of ultralong ZnO nanowires. Materials Chemistry and Physics, 2012, 136, 455-459. | 2.0 | 4 | | 359 | One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm, 2012, 14, 605-612. | 1.3 | 228 | | 360 | Morphologically-tunable TiO2 nanorod film with high energy facets: green synthesis, growth mechanism and photocatalytic activity. Nanoscale, 2012, 4, 5023. | 2.8 | 44 | | # | Article | IF | CITATIONS | |-----|---|-------------------|----------------------| | 361 | In situ Generation of Well-Dispersed ZnO Quantum Dots on Electrospun Silica Nanotubes with High Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2012, 4, 785-790. | 4.0 | 63 | | 362 | Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (<i>Allium sativum</i> L.): A morphological study. Nanotoxicology, 2012, 6, 241-248. | 1.6 | 109 | | 363 | Simple route to self-assembled BiOCl networks photocatalyst from nanosheet with exposed (001) facet. Micro and Nano Letters, 2012, 7, 152. | 0.6 | 35 | | 364 | Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor. Advanced Functional Materials, 2012, 22, 2759-2765. | 7.8 | 627 | | 365 | Thermally Stable Pyrochlore <scp><scp>Y₂Ti₂O₇</scp></scp> : <scp><scp>Eu³⁺</scp></scp> Orange–Red Emitting Phosphors. Journal of the American Ceramic Society, 2012, 95, 658-662. | 1.9 | 36 | | 366 | Influence of Flux on Morphology and Luminescence Properties of Phosphors: A Case Study on <scp><scp>Y</scp></scp> <scp>O</scp> | >< ≤9 b>7< | /s ab >:0.45< | | 367 | Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection. Colloids and Surfaces B: Biointerfaces, 2012, 94, 157-162. | 2.5 | 48 | | 368 | Electrospinning preparation and photoluminescence properties of poly (methyl methacrylate)/Eu3+ions composite nanofibers and nanoribbons. Materials Research Bulletin, 2012, 47, 321-327. | 2.7 | 15 | | 369 | Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sciences, 2012,
14, 139-144. | 1.5 | 77 | | 370 | Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity. Journal of Hazardous Materials, 2012, 217-218, 422-428. | 6.5 | 86 | | 371 | Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2. Journal of Hazardous Materials, 2012, 219-220, 156-163. | 6.5 | 67 | | 372 | In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 2011, 3, 3357. | 2.8 | 566 | | 373 | Solvothermal synthesis and electrochemical properties of 3D flower-like iron phthalocyanine hierarchical nanostructure. Nanoscale, 2011, 3, 5126. | 2.8 | 30 | | 374 | Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 6922. | 6.7 | 113 | | 375 | Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Applied Physics Letters, 2011, 99, . | 1.5 | 65 | | 376 | Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 17746. | 6.7 | 143 | | 377 | Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance. IEEE Electron Device Letters, 2011, 32, 1442-1444. | 2.2 | 121 | | 378 | Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2011, 115, 22276-22285. | 1.5 | 111 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 379 | In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chemical Communications, 2011, 47, 3906. | 2.2 | 276 | | 380 | Highly Efficient Decomposition of Organic Dye by Aqueous-Solid Phase Transfer and In Situ Photocatalysis Using Hierarchical Copper Phthalocyanine Hollow Spheres. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 2573-2578. | 4.0 | 78 | | 381 | High Photocatalytic Activity of ZnOâ^Carbon Nanofiber Heteroarchitectures. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 590-596. | 4.0 | 415 | | 382 | TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale, 2011, 3, 2943. | 2.8 | 187 | | 383 | Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale, 2011, 3, 5034. | 2.8 | 299 | | 384 | Hierarchical Nanostructures of Copper(II) Phthalocyanine on Electrospun TiO ₂ Nanofibers: Controllable Solvothermal-Fabrication and Enhanced Visible Photocatalytic Properties. ACS Applied Materials & Diterfaces, 2011, 3, 369-377. | 4.0 | 194 | | 385 | Superhydrophobic and Ultraviolet-Blocking Cotton Textiles. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1277-1281. | 4.0 | 177 | | 386 | Dandelion-like Fe3O4@CuTNPc hierarchical nanostructures as a magnetically separable visible-light photocatalyst. Journal of Materials Chemistry, 2011, 21, 12083. | 6.7 | 54 | | 387 | Controllable fabrication of cadmium phthalocyanine nanostructures immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic properties under visible light. Catalysis Communications, 2011, 12, 880-885. | 1.6 | 42 | | 388 | Controlled synthesis of PAN/Ag2S composites nanofibers via electrospinning-assisted hydro(solvo)thermal method. Journal of Non-Crystalline Solids, 2011, 357, 1488-1493. | 1.5 | 20 | | 389 | A Facile in Situ Hydrothermal Method to SrTiO ₃ /TiO ₂ Nanofiber Heterostructures with High Photocatalytic Activity. Langmuir, 2011, 27, 2946-2952. | 1.6 | 269 | | 390 | Excitons Emissions and Raman Scattering of ZnO Nanoparticles Embedded in BaF2 Matrices by Reactive Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2011, 11, 9823-9828. | 0.9 | 0 | | 391 | Multiphonon Resonant Raman Scattering (MRRS) of Semiconductor Nanomaterials for Biodetection. Journal of Nanoscience and Nanotechnology, 2011, 11, 9357-9367. | 0.9 | 4 | | 392 | Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties. AlP Advances, 2011, 1 , . | 0.6 | 25 | | 393 | Rutile TiO2 nanowires on anatase TiO2 nanofibers: A branched heterostructured photocatalysts via interface-assisted fabrication approach. Journal of Colloid and Interface Science, 2011, 363, 157-164. | 5.0 | 50 | | 394 | Ultrasensitive protein detection in terms of multiphonon resonance Raman scattering in ZnS nanocrystals. Applied Physics Letters, 2011, 98, . | 1.5 | 13 | | 395 | Photovoltaic properties of graphene oxide sheets beaded with ZnO nanoparticles. Journal of Solid State Chemistry, 2011, 184, 881-887. | 1.4 | 39 | | 396 | Red-emitting LiEuMo2â°'xSixO8 phosphors for white light-emitting diodes. Journal of Luminescence, 2011, 131, 653-656. | 1.5 | 17 | | # | Article | IF | CITATIONS | |-----|--|--------------|-----------------------------| | 397 | Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior. Journal of Colloid and Interface Science, 2011, 356, 706-712. | 5.0 | 88 | | 398 | Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. Journal of Colloid and Interface Science, 2011, 359, 220-227. | 5.0 | 87 | | 399 | Visible Luminescence Mechanism of ZnO Nanoparticles Synthesized by Sol–Gel Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 9415-9420. | 0.9 | 3 | | 400 | Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film. Applied Physics Letters, 2011, 98, . | 1.5 | 27 | | 401 | One-Step Nonaqueous Synthesis of Pure Phase TiO ₂ Nanocrystals from TiCl ₄ in Butanol and Their Photocatalytic Properties. Journal of Nanomaterials, 2011, 2011, 1-6. | 1.5 | 5 | | 402 | Ultraviolet Lasing Action in ZnO Nanosheets. Journal of Nanoscience and Nanotechnology, 2010, 10, 6744-6747. | 0.9 | 2 | | 403 | The Synthesis and Optical Properties of ZnO Nanocombs. Journal of Nanoscience and Nanotechnology, 2010, 10, 2370-2374. | 0.9 | 7 | | 404 | Probing the Visible Luminescence Mechanism in ZnO Nanoparticles by Band Edge Modulation. Journal of Nanoscience and Nanotechnology, 2010, 10, 2185-2189. | 0.9 | 5 | | 405 | The ultralow driven current ultraviolet-blue light-emitting diode based on n-ZnO nanowires/i-polymer/p-GaN heterojunction. Applied Physics Letters, 2010, 97, . | 1.5 | 26 | | 406 | Magnetic-field-assisted rapid ultrasensitive immunoassays using Fe3O4/ZnO/Au nanorices as Raman probes. Biosensors and Bioelectronics, 2010, 26, 918-922. | 5 . 3 | 30 | | 407 | Effects of temperature and pressure on the structural and optical properties of ZnO films grown by pulsed laser deposition. Science China Technological Sciences, 2010, 53, 317-321. | 2.0 | 3 | | 408 | Microstructure and optical properties of Eu-doped Mg x Zn1â^'x O hexagonal nanocrystals. Science China Technological Sciences, 2010, 53, 761-765. | 2.0 | 1 | | 409 | Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance. Journal of Sol-Gel Science and Technology, 2010, 55, 105-110. | 1.1 | 28 | | 410 | Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. Materials Research Bulletin, 2010, 45, 1406-1412. | 2.7 | 64 | | 411 | Synthesis of heteroarchitectures of PbS nanostructures well-erected on electrospun TiO2 nanofibers. Journal of Colloid and Interface Science, 2010, 346, 324-329. | 5.0 | 18 | | 412 | Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl) Tj ETQq0 0 0 rg | gBT_/Overlo | ock ₄₄ 0 Tf 50 1 | | 413 | Zinc phthalocyanine hierarchical nanostructure with hollow interior space: Solvent–thermal synthesis and high visible photocatalytic property. Journal of Colloid and Interface Science, 2010, 348, 37-42. | 5.0 | 45 | | 414 | Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. Journal of Colloid and Interface Science, 2010, 351, 57-62. | 5.0 | 121 | | # | Article | lF | Citations | |-----|---|-----|-----------| | 415 | Electrospun nanofibers of poly(acrylonitrile)/Eu3+ and their photoluminescence properties. Journal of Physics and Chemistry of Solids, 2010, 71, 273-278. | 1.9 | 24 | | 416 | Effects of compliance currents on the formation and rupture of conducting filaments in unipolar resistive switching of CoO film. Journal Physics D: Applied Physics, 2010, 43, 385105. | 1.3 | 31 | | 417 | Characterization and Optical Transition in Tb-Doped 12CaOÂ-7Al2O3 Powders. Journal of Nanoscience and Nanotechnology, 2010, 10, 2125-2130. | 0.9 | 3 | | 418 | Multifunctional Fe ₃ O ₄ /ZnO Nanocomposites with Magnetic and Optical Properties. Journal of Nanoscience and Nanotechnology, 2010, 10, 1992-1997. | 0.9 | 25 | | 419 | Amplified spontaneous
emission from an Ag-backed red-fluorescent-dye-doped polymer film. Applied Optics, 2010, 49, 315. | 2.1 | 5 | | 420 | Electrospun Nanofibers of $\langle i \rangle p \langle i \rangle$ -Type NiO/ $\langle i \rangle n \langle i \rangle$ -Type ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2915-2923. | 4.0 | 574 | | 421 | Photo-assisted preparation and patterning of large-area reduced graphene oxide–TiO2 conductive thin film. Chemical Communications, 2010, 46, 3499. | 2.2 | 105 | | 422 | Electrospun Nanofibers of ZnOâ^'SnO ₂ Heterojunction with High Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 7920-7925. | 1.5 | 345 | | 423 | Heteroepitaxial Growth and Spatially Resolved Cathodoluminescence of ZnO/MgZnO Coaxial Nanorod Arrays. Journal of Physical Chemistry C, 2010, 114, 16148-16152. | 1.5 | 31 | | 424 | A simple route to controllable growth of ZnOnanorod arrays on conducting substrates. CrystEngComm, 2010, 12, 940-946. | 1.3 | 20 | | 425 | Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films. Applied Physics Letters, 2009, 94, . | 1.5 | 41 | | 426 | Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent x-ray photoelectron spectroscopy. Applied Physics Letters, 2009, 95, . | 1.5 | 78 | | 427 | Microphotoluminescence investigation on single ZnO microrods with different morphologies. Journal of Applied Physics, 2009, 105, . | 1.1 | 2 | | 428 | Effect of nitrogenized Si(1 1 1) substrates on the quality of ZnO films grown by pulsed laser deposition. Journal Physics D: Applied Physics, 2009, 42, 035307. | 1.3 | 2 | | 429 | Hexamethylenediamine-assisted hydrothermal preparation of uniform ZnO particles and their morphology-dependent photoluminescent properties. Materials Chemistry and Physics, 2009, 115, 547-550. | 2.0 | 8 | | 430 | Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning. Macromolecular Materials and Engineering, 2009, 294, 673-678. | 1.7 | 119 | | 431 | Erasure mechanisms of polarization holographic gratings in spirooxazineâ€doped polymer films. Journal of Applied Polymer Science, 2009, 111, 2157-2162. | 1.3 | 11 | | 432 | Electrospun nanofibers of NiO/SiO2 composite. Journal of Physics and Chemistry of Solids, 2009, 70, 1374-1377. | 1.9 | 14 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 433 | Growth and optical properties of ZnO microwells by chemical vapor deposition method. Physica B: Condensed Matter, 2009, 404, 315-319. | 1.3 | 4 | | 434 | The structure and photoluminescence properties of ZnO nanobelts prepared by a thermal evaporation process. Journal of Luminescence, 2009, 129, 340-343. | 1.5 | 29 | | 435 | Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. Journal of Colloid and Interface Science, 2009, 333, 242-248. | 5.0 | 183 | | 436 | Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid–liquid interface using oleate as surfactant and reactant. Journal of Magnetism and Magnetic Materials, 2009, 321, 408-412. | 1.0 | 70 | | 437 | Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 39-47. | 2.0 | 60 | | 438 | Heterostructured ZnO/Au Nanoparticles-Based Resonant Raman Scattering for Protein Detection. Journal of Physical Chemistry B, 2009, 113, 1468-1472. | 1.2 | 57 | | 439 | ZnO Hollow Nanofibers: Fabrication from Facile Single Capillary Electrospinning and Applications in Gas Sensors. Journal of Physical Chemistry C, 2009, 113, 19397-19403. | 1.5 | 189 | | 440 | Size-Controlled Synthesis and Optical Properties of Small-Sized ZnO Nanorods. Journal of Physical Chemistry C, 2009, 113, 7497-7502. | 1.5 | 78 | | 441 | SnO ₂ Nanostructures-TiO ₂ Nanofibers Heterostructures: Controlled Fabrication and High Photocatalytic Properties. Inorganic Chemistry, 2009, 48, 7261-7268. | 1.9 | 311 | | 442 | Bioinspired Preparation of Ultrathin SiO ₂ Shell on ZnO Nanowire Array for Ultraviolet-Durable Superhydrophobicity. Langmuir, 2009, 25, 13619-13624. | 1.6 | 53 | | 443 | Waterâ^'Dichloromethane Interface Controlled Synthesis of Hierarchical Rutile TiO ₂ Superstructures and Their Photocatalytic Properties. Inorganic Chemistry, 2009, 48, 1105-1113. | 1.9 | 92 | | 444 | Pulsed laser deposition of high Mg-content MgZnO films: Effects of substrate temperature and oxygen pressure. Journal of Applied Physics, 2009, 106, . | 1.1 | 33 | | 445 | A new approach to white light emitting diodes of p-GaN/i-ZnO/n-ZnO heterojunctions. Applied Physics B: Lasers and Optics, 2008, 92, 185-188. | 1.1 | 23 | | 446 | Local microstructure and photoluminescence of Er-doped 12CaO·7Al2O3 powder. Journal of Rare Earths, 2008, 26, 433-438. | 2.5 | 15 | | 447 | The synthesis and optical properties of the heterostructured ZnO/Au nanocomposites. Journal of Colloid and Interface Science, 2008, 326, 392-395. | 5.0 | 57 | | 448 | Biocompatible ZnO/Au Nanocomposites for Ultrasensitive DNA Detection Using Resonance Raman Scattering. Journal of Physical Chemistry B, 2008, 112, 6484-6489. | 1.2 | 104 | | 449 | Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion batteries. Materials Letters, 2008, 62, 2092-2095. | 1.3 | 46 | | 450 | Heterostructures of ZnO Microrods Coated with Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 15980-15984. | 1.5 | 24 | | # | Article | IF | Citations | |-----|---|------|-----------| | 451 | Stability of p-type conductivity in nitrogen-doped ZnO thin film. Applied Physics Letters, 2008, 92, . | 1.5 | 47 | | 452 | Excitonic electroluminescence from ZnO-based heterojunction light emitting diodes. Journal Physics D: Applied Physics, 2008, 41, 155103. | 1.3 | 34 | | 453 | Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning. Journal of Chemical Physics, 2008, 129, 114708. | 1.2 | 23 | | 454 | Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Materialia, 2008, 59, 332-335. | 2.6 | 246 | | 455 | Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Applied Physics Letters, 2008, 93, . | 1.5 | 130 | | 456 | Preparation and Visible Emission of Er-Doped 12CaO·7Al2O3 Powder. Journal of Nanoscience and Nanotechnology, 2008, 8, 1458-1463. | 0.9 | 10 | | 457 | Photoluminescence of ZnO Nanocrystals Embedded in BaF2 Matrices by Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2008, 8, 1160-1164. | 0.9 | 9 | | 458 | Growth and Optical Properties of ZnO Low-Dimensional Nanostructures. Journal of Nanoscience and Nanotechnology, 2008, 8, 1101-1109. | 0.9 | 2 | | 459 | Room temperature excitonic spontaneous and stimulated emission properties in ZnO/MgZnO multiple quantum wells grown on sapphire substrate. Journal Physics D: Applied Physics, 2007, 40, 6541-6544. | 1.3 | 15 | | 460 | Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2007, 102 , . | 1.1 | 59 | | 461 | Intense luminescence of amorphous Eu2O3 prepared by aqueous sol–gel method. Journal of Non-Crystalline Solids, 2007, 353, 1037-1040. | 1.5 | 9 | | 462 | Optical properties of ZnO nanocrystals embedded in BaF ₂ film fabricated by magnetron sputtering. Journal Physics D: Applied Physics, 2007, 40, 5598-5601. | 1.3 | 5 | | 463 | A Simple Method for Controllable Preparation of Polymer Nanotubes via a Single Capillary Electrospinning. Langmuir, 2007, 23, 10920-10923. | 1.6 | 86 | | 464 | Photoswitches and Phototransistors from Organic Singleâ€Crystalline Subâ€micro/nanometer Ribbons. Advanced Materials, 2007, 19, 2624-2628. | 11,1 | 262 | | 465 | An Ultra Closely Ï€â€Stacked Organic Semiconductor for High Performance Fieldâ€Effect Transistors.
Advanced Materials, 2007, 19, 2613-2617. | 11.1 | 247 | | 466 | Photoluminescence of polyethylene oxide–ZnO composite electrospun fibers. Polymer, 2007, 48, 1459-1463. | 1.8 | 89 | | 467 | Electrospun nanofibers of poly(ethylene oxide)/teraamino-phthalocyanine copper(II) hybrids and its photoluminescence properties. Journal of Physics and Chemistry of Solids, 2007, 68, 2337-2340. | 1.9 | 30 | | 468 | Optical property of hexagonal nanocrystalline zno film on Si substrate prepared by plasma-enhanced CVD. Journal of Luminescence, 2007, 122-123, 822-824. | 1.5 | 5 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 469 | Growth and optical properties of ZnO nanostructures by vapor transport process. Materials Chemistry and Physics, 2007, 103, 190-194. | 2.0 | 11 | | 470 | Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process. Materials Chemistry and Physics, 2007, 106, 305-309. | 2.0 | 74 | | 471 | Growth and optical properties of ZnO nanorods by introducing ZnO sols prior to hydrothermal process. Materials Letters, 2007, 61, 3578-3581. | 1.3 | 19 | | 472 | Structural and optical properties of GaAs quantum dots formed in SiO2 matrix. Materials Letters, 2007, 61, 2875-2878. | 1.3 | 0 | | 473 | Enhanced Raman Scattering of ZnO Quantum Dots on Silver Colloids. Journal of Physical Chemistry
C, 2007, 111, 3290-3293. | 1.5 | 118 | | 474 | Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning. Journal of Materials Science, 2007, 42, 8470-8472. | 1.7 | 30 | | 475 | Structural, optical, and magnetic properties of Mn-doped ZnO thin film. Journal of Chemical Physics, 2006, 124, 074707. | 1.2 | 84 | | 476 | Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique. Journal of Physical Chemistry B, 2006, 110, 20263-20267. | 1.2 | 207 | | 477 | Electrical transport properties in nitrogen-doped p-type ZnO thin film. Semiconductor Science and Technology, 2006, 21, 1522-1526. | 1.0 | 20 | | 478 | Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes. Journal of Physical Chemistry B, 2006, 110, 14714-14718. | 1.2 | 123 | | 479 | Photoluminescence of MgxZn1–xO films grown on a sapphire substrate by a MOCVD technique.
Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3508-3511. | 0.8 | 2 | | 480 | Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. Chemical Physics Letters, 2006, 424, 340-344. | 1.2 | 86 | | 481 | Nanofibers and nanoplatelets of MoO3 via an electrospinning technique. Journal of Physics and Chemistry of Solids, 2006, 67, 1869-1872. | 1.9 | 42 | | 482 | Growth mechanism of ZnO nanocrystals with Zn-rich from dots to rods. Journal of Colloid and Interface Science, 2006, 298, 172-176. | 5.0 | 13 | | 483 | Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies.
Journal of Crystal Growth, 2006, 289, 55-58. | 0.7 | 85 | | 484 | ZnO hexagonal prisms grown onto p-Si (111) substrate from poly (vinylpyrrolidone) assisted electrochemical assembly. Journal of Crystal Growth, 2006, 290, 405-409. | 0.7 | 23 | | 485 | Temperature-enhanced ultraviolet emission in ZnO thin film. Journal of Luminescence, 2006, 119-120, 242-247. | 1.5 | 9 | | 486 | MgO nanofibres via an electrospinning technique. Journal of Materials Science, 2006, 41, 3821-3824. | 1.7 | 47 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 487 | Structural, optical and photoelectric properties of ZnO:ln and Mg x Zn1 â^'x O nanofilms prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 2006, 39, 57-62. | 1.1 | 10 | | 488 | Photoelectric properties of ZnO: In nanorods/SiO2/Si heterostructure assembled in aqueous solution. Applied Physics B: Lasers and Optics, 2006, 84, 507-510. | 1.1 | 6 | | 489 | Preparation of LiCoO2 nanofibers by electrospinning technique. Journal of Physics and Chemistry of Solids, 2006, 67, 1423-1426. | 1.9 | 38 | | 490 | Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. Advanced Materials, 2006, 18, 65-68. | 11.1 | 252 | | 491 | In Situ Patterning of Organic Single-Crystalline Nanoribbons on a SiO2 Surface for the Fabrication of Various Architectures and High-Quality Transistors. Advanced Materials, 2006, 18, 3010-3014. | 11.1 | 120 | | 492 | Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. Applied Physics Letters, 2006, 88, 242502. | 1.5 | 116 | | 493 | Photoluminescence study of ZnO nanotubes under hydrostatic pressure. Applied Physics Letters, 2006, 88, 133127. | 1.5 | 34 | | 494 | Structural and optical properties of ZnO nanotower bundles. Applied Physics Letters, 2006, 88, 123111. | 1.5 | 77 | | 495 | Photoluminescence of wurtzite ZnO under hydrostatic pressure. Journal of Applied Physics, 2006, 99, 066102. | 1.1 | 20 | | 496 | Effects of thermal annealing on the structural and optical properties of MgxZn1â^'xO nanocrystals. Journal of Colloid and Interface Science, 2005, 283, 513-517. | 5.0 | 29 | | 497 | Preparation of ZnO colloids by aggregation of the nanocrystal subunits. Journal of Colloid and Interface Science, 2005, 283, 380-384. | 5.0 | 55 | | 498 | Nanofibers of LiMn2O4 by electrospinning. Journal of Colloid and Interface Science, 2005, 285, 163-166. | 5.0 | 43 | | 499 | Raman and photoluminescence studies on nanocrystalline ZnO grown on GalnPAs substrates. Journal of Crystal Growth, 2005, 285, 24-30. | 0.7 | 10 | | 500 | Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films. Physica B: Condensed Matter, 2005, 367, 223-228. | 1.3 | 1 | | 501 | Real-time holographic gratings recorded by He–Ne laser in polymer films containing spirooxazine compounds pre-irradiated by UV light. Optical Materials, 2005, 27, 1567-1570. | 1.7 | 11 | | 502 | Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films. Materials Letters, 2005, 59, 1449-1452. | 1.3 | 8 | | 503 | Structural and Optical Properties of Uniform ZnO Nanosheets. Advanced Materials, 2005, 17, 586-590. | 11.1 | 313 | | 504 | A novel method for measuring distribution of orientation of one-dimensional ZnO using resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2005, 36, 1101-1105. | 1.2 | 16 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 505 | Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Applied Physics B: Lasers and Optics, 2005, 80, 871-874. | 1.1 | 76 | | 506 | The effect of surface properties on visible luminescence of nanosized colloidal ZnO membranes. Journal of Colloid and Interface Science, 2005, 282, 403-407. | 5.0 | 22 | | 507 | The structure and character of CdSe nanocrystals capped ZnO layer for phase transfer from hexane to ethanol solution. Surface Science, 2005, 582, 61-68. | 0.8 | 22 | | 508 | Nanofibers of CeO2 via an electrospinning technique. Thin Solid Films, 2005, 478, 228-231. | 0.8 | 86 | | 509 | Structure and Photoluminescence of Nano-ZnO Films Grown on a Si (100) Substrate by Oxygen- and Argon-Plasma-Assisted Thermal Evaporation of Metallic Zn. Chinese Physics Letters, 2005, 22, 998-1001. | 1.3 | 16 | | 510 | Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering. Journal of Applied Physics, 2005, 97, 103509. | 1.1 | 63 | | 511 | Pressure-dependent photoluminescence of ZnO nanosheets. Journal of Applied Physics, 2005, 98, 106106. | 1.1 | 27 | | 512 | The structural and optical properties of Cu2O films electrodeposited on different substrates. Semiconductor Science and Technology, 2005, 20, 44-49. | 1.0 | 96 | | 513 | The optical properties of ZnO hexagonal prisms grown from poly (vinylpyrrolidone)-assisted electrochemical assembly onto Si (111) substrate. Journal of Chemical Physics, 2005, 122, 174703. | 1.2 | 24 | | 514 | F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Applied Physics Letters, 2005, 86, 123107. | 1.5 | 156 | | 515 | White-light emission of polyvinyl alcoholâ^•ZnO hybrid nanofibers prepared by electrospinning. Applied Physics Letters, 2005, 87, 113115. | 1.5 | 205 | | 516 | Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method. Journal of Chemical Physics, 2005, 123, 134701. | 1.2 | 194 | | 517 | Formation and luminescence of ZnOnanoparticles embedded in MgOfilms. Physical Review B, 2005, 71, . | 1.1 | 28 | | 518 | Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy. Journal of Physics Condensed Matter, 2005, 17, 3035-3042. | 0.7 | 33 | | 519 | Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition. Semiconductor Science and Technology, 2005, 20, 796-800. | 1.0 | 65 | | 520 | A Thermally Activated Exciton–Exciton Collision Process in ZnO Microrods. Chinese Physics Letters, 2004, 21, 1640-1643. | 1.3 | 1 | | 521 | Photoluminescence of F-passivated ZnO nanocrystalline films made from thermally oxidized ZnF2films. Journal of Physics Condensed Matter, 2004, 16, 5143-5150. | 0.7 | 28 | | 522 | The photoluminescence properties of ZnO:N films fabricated by thermally oxidizing Zn3N2films using plasma-assisted metal-organic chemical vapour deposition. Journal of Physics Condensed Matter, 2004, 16, 4635-4642. | 0.7 | 63 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 523 | Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica. Journal Physics D: Applied Physics, 2004, 37, 3025-3029. | 1.3 | 45 | | 524 | Effects of annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 588. | 0.2 | 5 | | 525 | The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral. Journal of Sol-Gel Science and Technology, 2004, 30, 157-161. | 1.1 | 74 | | 526 | A novel method for making ZrO2 nanofibres via an electrospinning technique. Journal of Crystal Growth, 2004, 267, 380-384. | 0.7 | 143 | | 527 | Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light. Optics Communications, 2004, 242, 115-122. | 1.0 | 22 | | 528 | The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B: Condensed Matter, 2004, 351, 178-183. | 1.3 | 91 | | 529 | Fabrication of NiCo2O4 nanofibers by electrospinning. Solid State
Communications, 2004, 131, 107-109. | 0.9 | 96 | | 530 | Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique. Journal of Solid State Chemistry, 2004, 177, 2628-2631. | 1.4 | 116 | | 531 | Electrospun nanofibers of NiO/ZnO composite. Inorganic Chemistry Communication, 2004, 7, 625-627. | 1.8 | 71 | | 532 | A control on the photoluminescence properties in P-passivated nanocrystalline ZnO films. Chemical Physics Letters, 2004, 397, 360-363. | 1.2 | 4 | | 533 | Effects of thermal annealing on ZnO films grown by plasma enhanced chemical vapour deposition from Zn(C2H5)2and CO2gas mixtures. Journal Physics D: Applied Physics, 2003, 36, 719-722. | 1.3 | 59 | | 534 | The dependence of emission spectra of rare earth ion on the band-gap energy of MgxZn1â^'xO alloy. Journal of Crystal Growth, 2003, 249, 163-166. | 0.7 | 10 | | 535 | Effects of RF power on properties of ZnO thin films grown on Si (001) substrate by plasma enhanced chemical vapor deposition. Journal of Crystal Growth, 2003, 249, 179-185. | 0.7 | 62 | | 536 | Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. Journal of Crystal Growth, 2003, 254, 80-85. | 0.7 | 125 | | 537 | Holographic grating recorded by He–Ne laser operating at 632.8 nm in polymer film containing push–pull azo dye. Optics Communications, 2003, 220, 289-295. | 1.0 | 8 | | 538 | Photochromism and holographic recording in polymer film containing chiral azo molecules derived from amino acid. Optical Materials, 2003, 22, 187-192. | 1.7 | 16 | | 539 | Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates. Journal of Crystal Growth, 2003, 254, 86-91. | 0.7 | 18 | | 540 | Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films. Journal of Physics Condensed Matter, 2003, 15, 1975-1981. | 0.7 | 6 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 541 | The optical properties of ZnO films grown on porous Si templates. Journal Physics D: Applied Physics, 2003, 36, 2705-2708. | 1.3 | 61 | | 542 | Structure and photoluminescence properties of ZnO microrods. Journal of Applied Physics, 2003, 94, 5605-5608. | 1.1 | 29 | | 543 | Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix. Applied Physics Letters, 2003, 83, 1210-1212. | 1.5 | 46 | | 544 | Optical properties and electrical characterization of <i>p</i> -type ZnO thin films prepared by thermally oxiding Zn ₃ N ₂ thin films. Journal of Materials Research, 2003, 18, 8-13. | 1.2 | 92 | | 545 | Blue Cathodoluminescence from Highly Er-Doped ZnO Thin Films Induced by the Phonon Bottleneck Effect. Chinese Physics Letters, 2003, 20, 401-403. | 1.3 | 0 | | 546 | Growth of stoichiometric (002) ZnO thin films on Si (001) substrate by using plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1779-1783. | 0.9 | 9 | | 547 | Growth of high quality ZnO thin films at low temperature on Si(100) substrates by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 265-269. | 0.9 | 20 | | 548 | Photoluminescence and Optically Pumped Ultraviolet Lasing from Nanocrystalline ZnO Thin Films
Prepared by Thermal Oxidation of High-Quality ZnS Thin Films. Chinese Physics Letters, 2002, 19, 127-130. | 1.3 | 14 | | 549 | Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. Journal of Applied Physics, 2002, 92, 3293-3298. | 1.1 | 92 | | 550 | High quality ZnO thin films grown by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2002, 91, 501. | 1.1 | 90 | | 551 | Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates. Physica B: Condensed Matter, 2002, 322, 31-36. | 1.3 | 39 | | 552 | Effect of the growth temperature on ZnO thin films grown by plasma enhanced chemical vapor deposition. Thin Solid Films, 2002, 414, 170-174. | 0.8 | 29 | | 553 | Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. Solid State Communications, 2002, 121, 531-536. | 0.9 | 43 | | 554 | Temperature dependence of excitonic luminescence from nanocrystalline ZnO films. Journal of Luminescence, 2002, 99, 149-154. | 1.5 | 93 | | 555 | Room-temperature blue luminescence from ZnO:Er thin films. Thin Solid Films, 2002, 413, 257-261. | 0.8 | 53 | | 556 | Structural and optical properties of MgxZn1â^'xO thin films prepared by the solâ€"gel method. Journal of Crystal Growth, 2002, 234, 427-430. | 0.7 | 36 | | 557 | The structure and photoluminescence of ZnO films prepared by post-thermal annealing zinc-implanted silica. Journal of Crystal Growth, 2002, 240, 152-156. | 0.7 | 42 | | 558 | High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. Journal of Crystal Growth, 2002, 240, 463-466. | 0.7 | 31 | ## Yıchun Lıu | # | Article | IF | CITATION | |-----|--|-----|----------| | 559 | High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn. Journal of Crystal Growth, 2002, 240, 467-472. | 0.7 | 84 | | 560 | The photoluminescence of ZnO thin films grown on Si (100) substrate by plasma-enhanced chemical vapor deposition. Journal of Crystal Growth, 2002, 240, 479-483. | 0.7 | 41 | | 561 | Title is missing!. Journal of Sol-Gel Science and Technology, 2002, 23, 231-234. | 1.1 | 12 | | 562 | Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. Journal Physics D: Applied Physics, 2001, 34, 3430-3433. | 1.3 | 68 | | 563 | Growth of ultrathin SiO2 on Si by surface irradiation with an O2+Ar electron cyclotron resonance microwave plasma at low temperatures. Journal of Applied Physics, 1999, 85, 1911-1915. | 1.1 | 30 | | 564 | Compositional and structural studies of amorphous silicon-nitrogen alloys deposited at room temperature using a sputtering-type electron cyclotron resonance microwave plasma. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 137-148. | 0.6 | 5 | | 565 | In situ FT-IR reflective absorption spectroscopy for characterization of SiO2 thin films deposited using sputtering-type electron cyclotron resonance microwave plasma. Applied Surface Science, 1997, 121-122, 228-232. | 3.1 | 9 | | 566 | The effect of nitrogen on the microstructure and the luminescence properties of a-C:H thin films. Solid State Communications, 1996, 100, 597-602. | 0.9 | 21 | | 567 | Multiple-hologram storage for thin layers of Methyl Orange dyes in polyvinyl alcohol matrices.
Optics Letters, 1995, 20, 1495. | 1.7 | 12 |