Masahiro Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6523963/publications.pdf

Version: 2024-02-01

40 papers

3,883

201674 27 h-index 302126 39 g-index

42 all docs 42 docs citations

times ranked

42

7335 citing authors

#	Article	IF	CITATIONS
1	Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metabolism, 2022, 34, 564-580.e8.	16.2	21
2	Menin and Menin-Associated Proteins Coregulate Cancer Energy Metabolism. Cancers, 2020, 12, 2715.	3.7	7
3	The CCR4–NOT deadenylase complex safeguards thymic positive selection by down-regulating aberrant pro-apoptotic gene expression. Nature Communications, 2020, 11, 6169.	12.8	11
4	Hepatic Choline Transport Is Inhibited During Fatty Acid–Induced Lipotoxicity and Obesity. Hepatology Communications, 2020, 4, 876-889.	4.3	5
5	4E-BP–Dependent Translational Control of Irf8 Mediates Adipose Tissue Macrophage Inflammatory Response. Journal of Immunology, 2020, 204, 2392-2400.	0.8	11
6	Hepatic posttranscriptional network comprised of CCR4–NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7973-7981.	7.1	21
7	Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metabolism, 2018, 28, 817-832.e8.	16.2	61
8	Translational control of ERK signaling through miRNA/4EHP-directed silencing. ELife, 2018, 7, .	6.0	41
9	Adipocyteâ€specific disruption of mouse <i>Cnot3</i> causes lipodystrophy. FEBS Letters, 2017, 591, 358-368.	2.8	20
10	mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell, 2017, 67, 922-935.e5.	9.7	249
11	Translation is actively regulated during the differentiation of CD8+ effector T cells. Nature Immunology, 2017, 18, 1046-1057.	14.5	126
12	Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget, 2017, 8, 50542-50556.	1.8	21
13	mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nature Communications, 2016, 7, 11127.	12.8	75
14	nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Research, 2016, 26, 636-648.	5.5	177
15	Post-transcriptional Stabilization of Ucp1 mRNA Protects Mice from Diet-Induced Obesity. Cell Reports, 2015, 13, 2756-2767.	6.4	46
16	mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 2015, 14, 473-480.	2.6	397
17	CNOT3 contributes to early B cell development by controlling <i>lgh</i> rearrangement and <i>p53</i> mRNA stability. Journal of Experimental Medicine, 2015, 212, 1465-1479.	8.5	43
18	La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). Journal of Biological Chemistry, 2015, 290, 15996-16020.	3.4	198

#	Article	IF	CITATIONS
19	Deletion of the gene encoding GO/G1 switch protein 2 (GOs2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice. Diabetologia, 2015, 58, 149-157.	6.3	38
20	Stability of mRNA influences osteoporotic bone mass via CNOT3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2692-2697.	7.1	29
21	Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. Rna, 2014, 20, 1398-1409.	3.5	112
22	Multifunctional roles of the mammalian CCR4ââ,¬â€œNOT complex in physiological phenomena. Frontiers in Genetics, 2014, 5, 286.	2.3	95
23	Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale. Journal of Visualized Experiments, 2014, , .	0.3	153
24	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	16.2	647
25	Polysome Profiling Analysis. Bio-protocol, 2013, 3, .	0.4	9
26	Tob2 Inhibits Peroxisome Proliferator-Activated Receptor \hat{I}^3 2 Expression by Sequestering Smads and C/EBP <i>\hat{I}±</i> during Adipocyte Differentiation. Molecular and Cellular Biology, 2012, 32, 5067-5077.	2.3	27
27	A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development. Molecular and Cellular Biology, 2012, 32, 3585-3593.	2.3	164
28	Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression. Biochemical and Biophysical Research Communications, 2012, 419, 268-273.	2.1	15
29	elF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies. Cancer Research, 2012, 72, 6468-6476.	0.9	140
30	Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8977-8982.	7.1	169
31	CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death. Genes To Cells, 2011, 16, 368-379.	1.2	69
32	miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nature Structural and Molecular Biology, 2011, 18, 1211-1217.	8.2	286
33	The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability. Protein and Cell, 2011, 2, 755-763.	11.0	63
34	Obesity resistance and increased hepatic expression of catabolism-related mRNAs in <i>Cnot3</i> ^{+/â^'} mice. EMBO Journal, 2011, 30, 4678-4691.	7.8	71
35	Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity. EMBO Journal, 2010, 29, 2566-2576.	7.8	87
36	Involvement of the CCR4-NOT Deadenylase Complex in the Control of Cell Growth., 2009,, 229-237.		1

#	Article	IF	CITATION
37	Interaction of antiproliferative protein Tob with the CCR4â€NOT deadenylase complex. Cancer Science, 2008, 99, 755-761.	3.9	35
38	Crystal structures of human BTG2 and mouse TIS21 involved in suppression of CAF1 deadenylase activity. Nucleic Acids Research, 2008, 36, 6872-6881.	14.5	43
39	Depletion of Mammalian CCR4b Deadenylase Triggers Elevation of the <i>p27</i> ^{<i>Kip1</i>} mRNA Level and Impairs Cell Growth. Molecular and Cellular Biology, 2007, 27, 4980-4990.	2.3	98
40	Translational and HIF11-Dependent Metabolic Reprograming Underpin Oncometabolome Plasticity and Synergy Between Oncogenic Kinase Inhibitors and Biguanides. SSRN Electronic Journal, 0, , .	0.4	1