List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522837/publications.pdf Version: 2024-02-01

		29994	34900
125	10,381	54	98
papers	citations	h-index	g-index
133	133	133	14853
all docs	docs citations	times ranked	citing authors

FARIO MADTELLI

#	Article	IF	CITATIONS
1	Dissecting the transcriptome in cardiovascular disease. Cardiovascular Research, 2022, 118, 1004-1019.	1.8	16
2	miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxidants and Redox Signaling, 2022, 36, 685-706.	2.5	12
3	Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129. Cardiovascular Research, 2022, 118, 3183-3197.	1.8	18
4	Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene. Molecular Therapy - Nucleic Acids, 2022, 27, 184-199.	2.3	4
5	Regulatory miRNAs in Cardiovascular and Alzheimer's Disease: A Focus on Copper. International Journal of Molecular Sciences, 2022, 23, 3327.	1.8	3
6	Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. International Journal of Molecular Sciences, 2022, 23, 4622.	1.8	13
7	Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation. Circulation Research, 2022, 131, 239-257.	2.0	26
8	Regulatory RNAs in cardiovascular disease. , 2021, , 127-162.		0
9	Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 2021, 117, 1823-1840.	1.8	17
10	Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death and Disease, 2021, 12, 435.	2.7	8
11	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	4.7	26
12	Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. European Heart Journal, 2021, 42, 4881-4883.	1.0	12
13	Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors. International Journal of Molecular Sciences, 2021, 22, 6151.	1.8	62
14	Mitochondrial–cell cycle cross-talk drives endoreplication in heart disease. Science Translational Medicine, 2021, 13, eabi7964.	5.8	12
15	Hypoxia-Induced miR-210 Is Necessary for Vascular Regeneration upon Acute Limb Ischemia. International Journal of Molecular Sciences, 2020, 21, 129.	1.8	19
16	The epigenetic implication in coronavirus infection and therapy. Clinical Epigenetics, 2020, 12, 156.	1.8	73
17	Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. International Journal of Molecular Sciences, 2020, 21, 4890.	1.8	12
18	Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. Journal of Translational Medicine, 2020, 18, 408.	1.8	16

#	Article	IF	CITATIONS
19	Treating Senescence like Cancer: Novel Perspectives in Senotherapy of Chronic Diseases. International Journal of Molecular Sciences, 2020, 21, 7984.	1.8	7
20	Covid-19-Associated Coagulopathy: Biomarkers of Thrombin Generation and Fibrinolysis Leading the Outcome. Journal of Clinical Medicine, 2020, 9, 3487.	1.0	63
21	RNAs in Brain and Heart Diseases. International Journal of Molecular Sciences, 2020, 21, 3717.	1.8	5
22	Exosomes: From Potential Culprits to New Therapeutic Promise in the Setting of Cardiac Fibrosis. Cells, 2020, 9, 592.	1.8	35
23	Regulatory RNAs in Heart Failure. Circulation, 2020, 141, 313-328.	1.6	133
24	Epigenetic Signaling and RNA Regulation in Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 509.	1.8	21
25	Call to action for the cardiovascular side of COVID-19. European Heart Journal, 2020, 41, 1796-1797.	1.0	12
26	Dysregulation of microRNA expression in diabetic skin. Journal of Dermatological Science, 2020, 98, 186-194.	1.0	5
27	Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. International Journal of Molecular Sciences, 2019, 20, 3079.	1.8	43
28	The Dark That Matters: Long Non-coding RNAs as Master Regulators of Cellular Metabolism in Non-communicable Diseases. Frontiers in Physiology, 2019, 10, 369.	1.3	56
29	Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 2019, 20, 1938.	1.8	37
30	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	1.3	14
31	P300/CBPâ€associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation. FASEB Journal, 2019, 33, 4107-4123.	0.2	11
32	Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxidants and Redox Signaling, 2019, 30, 992-1010.	2.5	26
33	Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells. Nature Communications, 2018, 9, 1281.	5.8	14
34	Long Noncoding RNAs and Cardiac Disease. Antioxidants and Redox Signaling, 2018, 29, 880-901.	2.5	64
35	Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients. Circulation Research, 2018, 122, 31-46.	2.0	33
36	Circular RNAs in Muscle Function and Disease. International Journal of Molecular Sciences, 2018, 19, 3454.	1.8	76

#	Article	IF	CITATIONS
37	Circular <scp>RNA</scp> s: Methodological challenges and perspectives in cardiovascular diseases. Journal of Cellular and Molecular Medicine, 2018, 22, 5176-5187.	1.6	54
38	High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2. Cell Death and Disease, 2018, 9, 729.	2.7	17
39	A Breath of Fresh Air(n) in Molecular Cardiology. Circulation Research, 2018, 122, 1321-1323.	2.0	4
40	miR-210 Enhances the Therapeutic Potential of Bone-Marrow-Derived Circulating Proangiogenic Cells in the Setting of Limb Ischemia. Molecular Therapy, 2018, 26, 1694-1705.	3.7	33
41	Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovascular Research, 2017, 113, 453-463.	1.8	72
42	Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO1, and eNOS. Antioxidants and Redox Signaling, 2017, 27, 328-344.	2.5	110
43	Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Scientific Reports, 2017, 7, 16839.	1.6	57
44	CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients. Molecular Therapy - Nucleic Acids, 2017, 9, 337-348.	2.3	57
45	The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. , 2017, 171, 43-55.		12
46	The expression of the BPIFB4 and CXCR4 associates with sustained health in long-living individuals from Cilento-Italy. Aging, 2017, 9, 370-380.	1.4	28
47	Overexpression of miR-210 and its significance in ischemic tissue damage. Scientific Reports, 2017, 7, 9563.	1.6	38
48	Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging, 2017, 9, 2559-2586.	1.4	54
49	Validation of plasma microRNAs as biomarkers for myotonic dystrophy type 1. Scientific Reports, 2016, 6, 38174.	1.6	49
50	Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Scientific Reports, 2016, 6, 24141.	1.6	124
51	microRNAs in ischaemic cardiovascular diseases. European Heart Journal Supplements, 2016, 18, E31-E36.	0.0	9
52	Long noncoding RNA dysregulation in ischemic heart failure. Journal of Translational Medicine, 2016, 14, 183.	1.8	176
53	MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death and Disease, 2016, 7, e2086-e2086.	2.7	43
54	Noncoding RNA in age-related cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2015, 83, 142-155.	0.9	99

#	Article	IF	CITATIONS
55	Sirtuin function in aging heart and vessels. Journal of Molecular and Cellular Cardiology, 2015, 83, 55-61.	0.9	83
56	Proliferation of Multiple Cell Types in the Skeletal Muscle Tissue Elicited by Acute p21 Suppression. Molecular Therapy, 2015, 23, 885-895.	3.7	6
57	Tumor-Promoting Effects of Myeloid-Derived Suppressor Cells Are Potentiated by Hypoxia-Induced Expression of miR-210. Cancer Research, 2015, 75, 3771-3787.	0.4	112
58	p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte–endothelial crosstalk in diabetes after limb ischaemia. Nature Communications, 2015, 6, 8024.	5.8	119
59	Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia. PLoS ONE, 2015, 10, e0142111.	1.1	29
60	Genome Wide Identification of Aberrant Alternative Splicing Events in Myotonic Dystrophy Type 2. PLoS ONE, 2014, 9, e93983.	1.1	27
61	Nitric Oxide, Oxidative Stress, and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mtext>p</mml:mtext><mml:mtext>66</mml:mtext><!--<br-->in Diabetic Endothelial Dysfunction. BioMed Research International, 2014, 2014, 1-16.</mml:mrow></mml:msup></mml:mrow></mml:math>	mm bæ row	><រঞ্জണl:mrow
62	Noncoding RNAs: Emerging Players in Muscular Dystrophies. BioMed Research International, 2014, 2014, 1-12.	0.9	17
63	Hypoxia-Induced miR-210 Modulates Tissue Response to Acute Peripheral Ischemia. Antioxidants and Redox Signaling, 2014, 21, 1177-1188.	2.5	47
64	Emerging Roles of Non-Coding RNAs in the Hypoxic Response. Cancer Drug Discovery and Development, 2014, , 43-64.	0.2	3
65	MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death and Disease, 2014, 5, e1029-e1029.	2.7	122
66	HypoxamiR Regulation and Function in Ischemic Cardiovascular Diseases. Antioxidants and Redox Signaling, 2014, 21, 1202-1219.	2.5	79
67	Epigenetic mechanisms of hyperglycemic memory. International Journal of Biochemistry and Cell Biology, 2014, 51, 155-158.	1.2	39
68	MicroRNAs in Hypoxia Response. Antioxidants and Redox Signaling, 2014, 21, 1164-1166.	2.5	31
69	Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscular Disorders, 2014, 24, 509-515.	0.3	63
70	The Histone Acetylase Activator Pentadecylidenemalonate 1b Rescues Proliferation and Differentiation in the Human Cardiac Mesenchymal Cells of Type 2 Diabetic Patients. Diabetes, 2014, 63, 2132-2147.	0.3	66
71	Oxidative Stress and Epigenetic Regulation in Ageing and Age-Related Diseases. International Journal of Molecular Sciences, 2013, 14, 17643-17663.	1.8	183
72	Transcriptional Profiling of Hmgb1-Induced Myocardial Repair Identifies a Key Role for Notch Signaling. Molecular Therapy, 2013, 21, 1841-1851.	3.7	22

#	Article	IF	CITATIONS
73	Oxidative Stress and MicroRNAs in Vascular Diseases. International Journal of Molecular Sciences, 2013, 14, 17319-17346.	1.8	161
74	A Nitric Oxide-dependent Cross-talk between Class I and III Histone Deacetylases Accelerates Skin Repair. Journal of Biological Chemistry, 2013, 288, 11004-11012.	1.6	74
75	Enhancement of lysine acetylation accelerates wound repair. Communicative and Integrative Biology, 2013, 6, e25466.	0.6	37
76	MicroRNAs and Tissue Response to Acute Ischemia. Contributions To Statistics, 2013, , 97-112.	0.2	0
77	Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. Rna, 2012, 18, 472-484.	1.6	121
78	Hypoxia-inducible Factor 1-α Induces miR-210 in Normoxic Differentiating Myoblasts. Journal of Biological Chemistry, 2012, 287, 44761-44771.	1.6	85
79	MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes, 2012, 61, 1633-1641.	0.3	206
80	ROD1 Is a Seedless Target Gene of Hypoxia-Induced miR-210. PLoS ONE, 2012, 7, e44651.	1.1	35
81	Deregulated MicroRNAs in Myotonic Dystrophy Type 2. PLoS ONE, 2012, 7, e39732.	1.1	81
82	Deregulation of microRNA-503 Contributes to Diabetes Mellitus–Induced Impairment of Endothelial Function and Reparative Angiogenesis After Limb Ischemia. Circulation, 2011, 123, 282-291.	1.6	374
83	Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 2011, 21, 81-88.	0.3	109
84	MicroRNAâ€155 targets the <i>SKI</i> gene in human melanoma cell lines. Pigment Cell and Melanoma Research, 2011, 24, 538-550.	1.5	72
85	miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death and Differentiation, 2011, 18, 1628-1639.	5.0	399
86	microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascular Pharmacology, 2011, 55, 111-118.	1.0	65
87	miRâ€⊋10: More than a silent player in hypoxia. IUBMB Life, 2011, 63, 94-100.	1.5	196
88	Removing the brakes to cardiomyocyte cell cycle. Cell Cycle, 2011, 10, 1176-1177.	1.3	2
89	Knockdown of Cyclin-dependent Kinase Inhibitors Induces Cardiomyocyte Re-entry in the Cell Cycle. Journal of Biological Chemistry, 2011, 286, 8644-8654.	1.6	79
90	microRNA: Emerging therapeutic targets in acute ischemic diseases. , 2010, 125, 92-104.		166

#	Article	IF	CITATIONS
91	Transcription Factor NF-Y Induces Apoptosis in Cells Expressing Wild-Type p53 through E2F1 Upregulation and p53 Activation. Cancer Research, 2010, 70, 9711-9720.	0.4	36
92	MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease. Circulation, 2010, 122, S124-31.	1.6	407
93	Regulation of the endothelial cell cycle by the ubiquitin-proteasome system. Cardiovascular Research, 2010, 85, 272-280.	1.8	40
94	Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 2010, 31, 2765-2773.	1.0	709
95	MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiological Genomics, 2010, 42, 420-426.	1.0	123
96	p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose. Cardiovascular Research, 2009, 82, 421-429.	1.8	61
97	An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210. Journal of Biological Chemistry, 2009, 284, 35134-35143.	1.6	248
98	Correction for Colussi et al., HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1679-1679.	3.3	2
99	Common microâ€RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB Journal, 2009, 23, 3335-3346.	0.2	235
100	Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo. Neoplasia, 2009, 11, 732-W7.	2.3	32
101	Microrna-221 and Microrna-222 Modulate Differentiation and Maturation of Skeletal Muscle Cells. PLoS ONE, 2009, 4, e7607.	1.1	200
102	Hypoxia response and microRNAs: no longer two separate worlds. Journal of Cellular and Molecular Medicine, 2008, 12, 1426-1431.	1.6	182
103	HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19183-19187.	3.3	234
104	Protein Phosphatase 2A Subunit PR70 Interacts with pRb and Mediates Its Dephosphorylation. Molecular and Cellular Biology, 2008, 28, 873-882.	1.1	55
105	MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3. Journal of Biological Chemistry, 2008, 283, 15878-15883.	1.6	786
106	Nitric Oxide Modulates Chromatin Folding in Human Endothelial Cells via Protein Phosphatase 2A Activation and Class II Histone Deacetylases Nuclear Shuttling. Circulation Research, 2008, 102, 51-58.	2.0	114
107	p66ShcA and Oxidative Stress Modulate Myogenic Differentiation and Skeletal Muscle Regeneration after Hind Limb Ischemia. Journal of Biological Chemistry, 2007, 282, 31453-31459.	1.6	69
108	Molecular mechanisms of cardiomyocyte regeneration and therapeutic outlook. Trends in Molecular Medicine, 2007, 13, 125-133.	3.5	17

#	Article	IF	CITATIONS
109	Papilloma protein E6 abrogates shear stress-dependent survival in human endothelial cells: Evidence for specialized functions of paxillin. Cardiovascular Research, 2006, 70, 578-588.	1.8	9
110	Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11015-11020.	3.3	98
111	Cyclin D1 degradation enhances endothelial cell survival upon oxidative stress. FASEB Journal, 2006, 20, 1242-1244.	0.2	42
112	Impaired T- and B-cell development in Tcl1-deficient mice. Blood, 2005, 105, 1288-1294.	0.6	33
113	p66 ShcA Modulates Tissue Response to Hindlimb Ischemia. Circulation, 2004, 109, 2917-2923.	1.6	111
114	Hypoxia Inhibits Myogenic Differentiation through Accelerated MyoD Degradation. Journal of Biological Chemistry, 2004, 279, 16332-16338.	1.6	130
115	Enhanced Arteriogenesis and Wound Repair in Dystrophin-Deficient mdx Mice. Circulation, 2004, 110, 3341-3348.	1.6	53
116	p21Waf1/Cip1/Sdi1 mediates shear stress-dependent antiapoptotic function. Cardiovascular Research, 2004, 61, 693-704.	1.8	22
117	Active Localization of the Retinoblastoma Protein in Chromatin and Its Response to S Phase DNA Damage. Molecular Cell, 2003, 12, 735-746.	4.5	110
118	MyoD Stimulates RB Promoter Activity via the CREB/p300 Nuclear Transduction Pathway. Molecular and Cellular Biology, 2003, 23, 2893-2906.	1.1	73
119	Oxidative Stress Induces Protein Phosphatase 2A-dependent Dephosphorylation of the Pocket Proteins pRb, p107, and p130. Journal of Biological Chemistry, 2003, 278, 19509-19517.	1.6	105
120	p19ARF targets certain E2F species for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4455-4460.	3.3	167
121	Regulation of endogenous E2F1 stability by the retinoblastoma family proteins. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2858-2863.	3.3	34
122	The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway Genes and Development, 1996, 10, 2949-2959.	2.7	209
123	Characterization of two novel YY1 binding sites in the polyomavirus late promoter. Journal of Virology, 1996, 70, 1433-1438.	1.5	10
124	MyoD induces retinoblastoma gene expression during myogenic differentiation. Oncogene, 1994, 9, 3579-90.	2.6	94
125	Regulation of MyoD gene transcription and protein function by the transforming domains of the adenovirus E1A oncoprotein. Oncogene, 1993, 8, 267-78.	2.6	79