Hao Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522240/publications.pdf

Version: 2024-02-01

516710 526287 1,693 28 16 27 citations h-index g-index papers 28 28 28 1999 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	39.5	342
2	Redâ€Carbonâ€Quantumâ€Dotâ€Doped SnO ₂ Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906374.	21.0	230
3	2D Intermediate Suppression for Efficient Ruddlesden–Popper (RP) Phase Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1513-1520.	17.4	176
4	Tailoring Component Interaction for Airâ€Processed Efficient and Stable Allâ€Inorganic Perovskite Photovoltaic. Angewandte Chemie - International Edition, 2020, 59, 13354-13361.	13.8	158
5	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	21.0	96
6	Oneâ€Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar Rrl, 2018, 2, 1700217.	5.8	90
7	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	10.3	74
8	Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells. Journal of Power Sources, 2017, 372, 235-244.	7.8	66
9	Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. Research, 2020, 2020, 2616345.	5.7	59
10	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	46
11	Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy, 2019, 65, 104050.	16.0	44
12	Enhanced Performance of Perovskite Light-Emitting Diodes via Diamine Interface Modification. ACS Applied Materials & Diamine Interfaces, 2019, 11, 29132-29138.	8.0	42
13	Efficient Anti-solvent-free Spin-Coated and Printed Sn-Perovskite Solar Cells with Crystal-Based Precursor Solutions. Matter, 2020, 2, 167-180.	10.0	38
14	Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 2019, 59, 721-729.	16.0	33
15	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	10.3	23
16	Highâ€performance flexible perovskite photodetectors based on singleâ€crystalâ€like twoâ€dimensional Ruddlesden–Popper thin films. , 2023, 5, .		23
17	Toward Efficient and Stable Perovskite Solar Cells by 2D Interface Energy Band Alignment. Advanced Materials Interfaces, 2021, 8, .	3.7	19
18	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	14.9	18

#	Article	IF	CITATIONS
19	Overcoming the Limitation of Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells Through Using Mesoporous TiO ₂ Electron Extraction Layer. Energy and Environmental Materials, 2022, 5, 1317-1322.	12.8	17
20	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	3.1	16
21	Tailoring Component Interaction for Airâ€Processed Efficient and Stable Allâ€Inorganic Perovskite Photovoltaic. Angewandte Chemie, 2020, 132, 13456-13463.	2.0	15
22	Stable Metal–Halide Perovskite Colloids in Protic Ionic Liquid. CCS Chemistry, 2022, 4, 3264-3274.	7.8	13
23	Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers. Nanotechnology, 2018, 29, 385401.	2.6	12
24	Two-Dimensional Heterostructure of MoS ₂ /BA ₂ PbI ₄ 2D Ruddlesden–Popper Perovskite with an S Scheme Alignment for Solar Cells: A First-Principles Study. ACS Applied Electronic Materials, 2022, 4, 1939-1948.	4.3	11
25	Manipulation of Band Alignment in Two-Dimensional Vertical WSe ₂ /BA ₂ Pbl ₄ Ruddlesden–Popper Perovskite Heterojunctions via Defect Engineering. Journal of Physical Chemistry Letters, 2022, 13, 4579-4588.	4.6	10
26	Broadband white-light emission from a novel two-dimensional metal halide assembled by Pb–Cl hendecahedrons. Journal of Materials Chemistry C, 2022, 10, 9465-9470.	5.5	10
27	Perovskite Solar Cells: Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970252.	21.0	6
28	Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable <scp>MAPbI₃</scp> â€Based Inverted Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	6