John K Tsotsos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6521477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling visual attention via selective tuning. Artificial Intelligence, 1995, 78, 507-545.	5.8	1,006
2	Saliency, attention, and visual search: An information theoretic approach. Journal of Vision, 2009, 9, 5-5.	0.3	668
3	Analyzing vision at the complexity level. Behavioral and Brain Sciences, 1990, 13, 423-445.	0.7	667
4	Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 900-918.	8.0	411
5	Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical Image Analysis, 2008, 12, 335-357.	11.6	276
6	50 Years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117, 827-891.	4.7	259
7	40 years of cognitive architectures: core cognitive abilities and practical applications. Artificial Intelligence Review, 2020, 53, 17-94.	15.7	227
8	Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1053-1058.	7.1	210
9	A Computational Perspective on Visual Attention. , 2011, , .		182
10	Are They Going to Cross? A Benchmark Dataset and Baseline for Pedestrian Crosswalk Behavior. , 2017, ,		174
11	The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 2003, 43, 205-219.	1.4	173
12	Revisiting active perception. Autonomous Robots, 2018, 42, 177-196.	4.8	171
13	PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction. , 2019, , .		162
14	Understanding Pedestrian Behavior in Complex Traffic Scenes. IEEE Transactions on Intelligent Vehicles, 2018, 3, 61-70.	12.7	155
15	Agreeing to cross: How drivers and pedestrians communicate. , 2017, , .		130
16	A ?complexity level? analysis of immediate vision. International Journal of Computer Vision, 1988, 1, 303-320.	15.6	128
17	On the relative complexity of active vs. passive visual search. International Journal of Computer Vision, 1992, 7, 127-141.	15.6	114
18	Knowledge-based landmarking of cephalograms. Journal of Biomedical Informatics, 1986, 19, 282-309.	0.7	112

#	Article	IF	CITATIONS
19	A framework for visual motion understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2, 563-573.	13.9	104
20	Sensor Planning for 3D Object Search. Computer Vision and Image Understanding, 1999, 73, 145-168.	4.7	104
21	Ambient illumination and the determination of material changes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1986, 3, 1700.	1.5	96
22	Active Object Recognition Integrating Attention and Viewpoint Control. Computer Vision and Image Understanding, 1997, 67, 239-260.	4.7	92
23	Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification. , 2013, , .		91
24	Shape Representation and Recognition from Multiscale Curvature. Computer Vision and Image Understanding, 1997, 68, 170-189.	4.7	89
25	Techniques for disparity measurement. CVGIP Image Understanding, 1991, 53, 14-30.	1.3	88
26	Visual search for an object in a 3D environment using a mobile robot. Computer Vision and Image Understanding, 2010, 114, 535-547.	4.7	71
27	Attending to visual motion. Computer Vision and Image Understanding, 2005, 100, 3-40.	4.7	70
28	Behaviorist intelligence and the scaling problem. Artificial Intelligence, 1995, 75, 135-160.	5.8	68
29	On computational modeling of visual saliency: Examining what's right, and what's left. Vision Research, 2015, 116, 95-112.	1.4	64
30	Computational resources do constrain behavior. Behavioral and Brain Sciences, 1991, 14, 506-507.	0.7	54
31	Robot navigation via spatial and temporal coherent semantic maps. Engineering Applications of Artificial Intelligence, 2016, 48, 173-187.	8.1	54
32	Knowledge organization and its role in representation and interpretation for time-varying data: the ALVEN system. Computational Intelligence, 1985, 1, 16-32.	3.2	53
33	Attention links sensing to recognition. Image and Vision Computing, 2008, 26, 114-126.	4.5	50
34	Automatic detection of abnormal gait. Image and Vision Computing, 2009, 27, 108-115.	4.5	47
35	The different stages of visual recognition need different attentional binding strategies. Brain Research, 2008, 1225, 119-132.	2.2	46
36	PLAYBOT A visually-guided robot for physically disabled children. Image and Vision Computing, 1998, 16, 275-292.	4.5	45

#	Article	IF	CITATIONS
37	Active 3D Object Localization Using a Humanoid Robot. IEEE Transactions on Robotics, 2011, 27, 47-64.	10.3	45
38	Neural Mechanisms of Surround Attenuation and Distractor Competition in Visual Search. Journal of Neuroscience, 2011, 31, 5213-5224.	3.6	45
39	Towards the quantitative evaluation of visual attention models. Vision Research, 2015, 116, 258-268.	1.4	45
40	Dynamic label propagation for semi-supervised multi-class multi-label classification. Pattern Recognition, 2016, 52, 75-84.	8.1	45
41	Applying temporal constraints to the dynamic stereo problem. Computer Vision, Graphics, and Image Processing, 1986, 33, 16-32.	1.0	43
42	Computational models of visual attention. Scholarpedia Journal, 2011, 6, 6201.	0.3	42
43	Benchmark for Evaluating Pedestrian Action Prediction. , 2021, , .		41
44	Integrating Stereo Vision with a CNN Tracker for a Person-Following Robot. Lecture Notes in Computer Science, 2017, , 300-313.	1.3	41
45	Histogram of Oriented Uniform Patterns for robust place recognition and categorization. International Journal of Robotics Research, 2012, 31, 468-483.	8.5	40
46	An attentional prototype for early vision. Lecture Notes in Computer Science, 1992, , 551-560.	1.3	39
47	DESIGN AND PERFORMANCE OF TRISH, A BINOCULAR ROBOT HEAD WITH TORSIONAL EYE MOVEMENTS. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 07, 51-68.	1.2	39
48	Vision-Based Fallen Person Detection for the Elderly. , 2017, , .		37
49	The Roles of Endstopped and Curvature Tuned Computations in a Hierarchical Representation of 2D Shape. PLoS ONE, 2012, 7, e42058.	2.5	37
50	Intelligent control for perceptually attentive agents: The Sâ^— proposal. Robotics and Autonomous Systems, 1997, 21, 5-21.	5.1	36
51	The ARK project: Autonomous mobile robots for known industrial environments. Robotics and Autonomous Systems, 1998, 25, 83-104.	5.1	36
52	A Computational Learning Theory of Active Object Recognition Under Uncertainty. International Journal of Computer Vision, 2013, 101, 95-142.	15.6	36
53	Activation of Area MT/V5 and the Right Inferior Parietal Cortex during the Discrimination of Transient Direction Changes in Translational Motion. Cerebral Cortex, 2007, 17, 1733-1739.	2.9	34
54	The spatial profile of the focus of attention in visual search: Insights from MEG recordings. Vision Research, 2010, 50, 1312-1320.	1.4	32

#	Article	IF	CITATIONS
55	The feasibility of motion and structure from noisy time-varying image velocity information. International Journal of Computer Vision, 1990, 5, 239-269.	15.6	31
56	Motion Understanding: Task-Directed Attention and Representations that Link Perception with Action. International Journal of Computer Vision, 2001, 45, 265-280.	15.6	29
57	Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy. Journal of Neuroscience, 2017, 37, 10346-10357.	3.6	29
58	Person Following Robot Using Selected Online Ada-Boosting with Stereo Camera. , 2017, , .		28
59	Hand Gesture Recognition within a Linguistics-Based Framework. Lecture Notes in Computer Science, 2004, , 282-296.	1.3	26
60	Cognitive programs: software for attention's executive. Frontiers in Psychology, 2014, 5, 1260.	2.1	25
61	ATTENTION AND VISUAL SEARCH. International Journal of Neural Systems, 2007, 17, 275-288.	5.2	24
62	An Attentional Mechanism for Selecting Appropriate Actions Afforded by Graspable Objects. Psychological Science, 2008, 19, 1253-1257.	3.3	24
63	ls complexity theory appropriate for analyzing biological systems?. Behavioral and Brain Sciences, 1991, 14, 770-773.	0.7	23
64	Selectivity for speed gradients in human area MT/V5. NeuroReport, 2005, 16, 435-438.	1.2	23
65	Attending to orientation results in an inhibitory surround in orientation space. Perception & Psychophysics, 2008, 70, 30-35.	2.3	22
66	Active Vision for Door Localization and Door Opening using Playbot: A Computer Controlled Wheelchair for People with Mobility Impairments. , 2008, , .		22
67	Limited Capacity of Any Realizable Perceptual System Is a Sufficient Reason for Attentive Behavior. Consciousness and Cognition, 1997, 6, 429-436.	1.5	21
68	Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to Nothing. , 2019, , .		21
69	On Sensor Bias in Experimental Methods for Comparing Interest-Point, Saliency, and Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 110-126.	13.9	20
70	Active object recognition integrating attention and viewpoint control. Lecture Notes in Computer Science, 1994, , 2-14.	1.3	19
71	Attentional Modulation and Selection – An Integrated Approach. PLoS ONE, 2014, 9, e99681.	2.5	19
72	A statistical basis for visual field anisotropies. Neurocomputing, 2006, 69, 1301-1304.	5.9	18

#	Article	IF	CITATIONS
73	A Brief and Selective History of Attention. , 2005, , xxiii-xxxii.		17
74	Knowledge and the visual process: Content, form and use. Pattern Recognition, 1984, 17, 13-27.	8.1	16
75	A theory of active object localization. , 2009, , .		16
76	Active Fixation Control to Predict Saccade Sequences. , 2018, , .		16
77	Video Action Recognition for Lane-Change Classification and Prediction of Surrounding Vehicles. IEEE Transactions on Intelligent Vehicles, 2022, 7, 569-578.	12.7	16
78	Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation. Machine Vision and Applications, 2008, 19, 163-179.	2.7	15
79	Attention-based active visual search for mobile robots. Autonomous Robots, 2020, 44, 131-146.	4.8	15
80	Totally Looks Like - How Humans Compare, Compared to Machines. , 2018, , .		14
81	A Complexity-Level Analysis of the Sensor Planning Task for Object Search. Computational Intelligence, 2001, 17, 605-620.	3.2	13
82	Towards Social Autonomous Vehicles: Understanding Pedestrian-Driver Interactions. , 2018, , .		13
83	Computing Egomotion and Detecting Independent Motion from Image Motion Using Collinear Points. Computer Vision and Image Understanding, 1996, 64, 21-52.	4.7	12
84	Definition and recovery of kinematic features for recognition of American sign language movements. Image and Vision Computing, 2008, 26, 1650-1662.	4.5	12
85	Detecting motion patterns via direction maps with application to surveillance. Computer Vision and Image Understanding, 2009, 113, 291-307.	4.7	12
86	The importance of intermediate representations for the modeling of 2D shape detection: Endstopping and curvature tuned computations. , 2011, , .		12
87	Towards a Biologically Plausible Active Visual Search Model. Lecture Notes in Computer Science, 2005, , 133-147.	1.3	12
88	Tracking a person with pre-recorded image database and a pan, tilt, and zoom camera. Machine Vision and Applications, 2000, 12, 32-43.	2.7	11
89	Indoor Place Recognition System for Localization of Mobile Robots. , 2016, , .		11
90	Fast Visual Object Tracking using Ellipse Fitting for Rotated Bounding Boxes. , 2019, , .		11

Fast Visual Object Tracking using Ellipse Fitting for Rotated Bounding Boxes. , 2019, , . 90

#	Article	IF	CITATIONS
91	Spatiotemporal Saliency: Towards a Hierarchical Representation of Visual Saliency. Lecture Notes in Computer Science, 2009, , 98-111.	1.3	11
92	Visual Correlates of Fixation Selection: A Look at the Spatial Frequency Domain. , 2007, , .		10
93	Computational models of visual attention. Vision Research, 2015, 116, 93-94.	1.4	10
94	On the control of attentional processes in vision. Cortex, 2021, 137, 305-329.	2.4	10
95	Schemas: Not yet an interlingua for the brain sciences. Behavioral and Brain Sciences, 1987, 10, 447-448.	0.7	8
96	Detecting Motion Patterns via Direction Maps with Application to Surveillance. , 2005, , .		8
97	Fast, recurrent, attentional modulation improves saliency representation and scene recognition. , 2011, , .		8
98	Visual Saliency Improves Autonomous Visual Search. , 2014, , .		8
99	It's all about the constraints. Current Biology, 2014, 24, R854-R858.	3.9	8
100	A Focus on Selection for Fixation. Journal of Eye Movement Research, 2016, 9, .	0.8	8
101	<title>Laser eye: a new 3D sensor for active vision</title> . , 1993, , .		7
102	What roles can attention play in recognition?. , 2008, , .		7
103	STNet: Selective Tuning of Convolutional Networks for Object Localization. , 2017, , .		7
104	The Attentional Suppressive Surround: Eccentricity, Location-Based and Feature-Based Effects and Interactions. Frontiers in Neuroscience, 2018, 12, 710.	2.8	7
105	Attending to Motion: Localizing and Classifying Motion Patterns in Image Sequences. Lecture Notes in Computer Science, 2002, , 439-452.	1.3	7
106	On the collaborative object search team: a formulation. Lecture Notes in Computer Science, 1997, , 94-116.	1.3	7
107	Complexity, Vision, and Attention. , 2001, , 105-128.		7
108	Computer assessment of left ventricular wall motion: The ALVEN expert system. Journal of Biomedical Informatics, 1985, 18, 254-277.	0.7	6

#	Article	IF	CITATIONS
109	The Role of Computational Complexity in Perceptual Theory. Advances in Psychology, 1993, , 261-296.	0.1	6
110	VISUAL FEATURE BINDING WITHIN THE SELECTIVE TUNING ATTENTION FRAMEWORK. International Journal of Pattern Recognition and Artificial Intelligence, 2008, 22, 861-881.	1.2	6
111	Visual Representation Determines Search Difficulty: Explaining Visual Search Asymmetries. Frontiers in Computational Neuroscience, 2011, 5, 33.	2.1	6
112	Attention and Cognition: Principles to Guide Modeling. Cognitive Science and Technology, 2017, , 277-295.	0.4	6
113	Visual attention and its intimate links to spatial cognition. Cognitive Processing, 2018, 19, 121-130.	1.4	6
114	It's Not All About Size: On the Role of Data Properties in Pedestrian Detection. Lecture Notes in Computer Science, 2019, , 210-225.	1.3	6
115	Selective Tuning: Feature Binding Through Selective Attention. Lecture Notes in Computer Science, 2006, , 548-557.	1.3	6
116	Separable Linear Discriminant Classification. Lecture Notes in Computer Science, 2005, , 318-325.	1.3	6
117	Attention for Vision-Based Assistive and Automated Driving: A Review of Algorithms and Datasets. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 19907-19928.	8.0	6
118	A little complexity analysis goes a long way. Behavioral and Brain Sciences, 1990, 13, 458-469.	0.7	5
119	Hierarchical appearance-based classifiers for qualitative spatial localization. , 2009, , .		5
120	Energy minimization via graph cuts for semantic place labeling. , 2010, , .		5
121	Feed-forward visual processing suffices for coarse localization but fine-grained localization in an attention-demanding context needs feedback processing. PLoS ONE, 2019, 14, e0223166.	2.5	5
122	The Selective Tuning Model for Visual Attention. , 2002, , 239-249.		5
123	<title>Integrating task-directed planning with reactive object recognition</title> . , 1993, , .		4
124	Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?. Frontiers in Psychology, 2017, 8, 1216.	2.1	4
125	Priming Neural Networks. , 2018, , .		4
126	Development of spatial suppression surrounding the focus of visual attention. Journal of Vision, 2019, 19, 9.	0.3	4

#	Article	IF	CITATIONS
127	Different Binding Strategies for the Different Stages of Visual Recognition. , 2007, , 150-160.		4
128	Multiplicative modulations enhance diversity of hue-selective cells. Scientific Reports, 2020, 10, 8491.	3.3	4
129	Computational foundations for attentive processes. Scholarpedia Journal, 2008, 3, 6545.	0.3	4
130	<title>Behaviors for active object recognition</title> ., 1993, , .		3
131	KNOWLEDGE GRANULARITY SPECTRUM, ACTION PYRAMID, AND THE SCALING PROBLEM. International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15, 379-404.	1.2	3
132	Computational Foundations for Attentive Processes. , 2005, , 3-7.		3
133	Subspace manifold learning with sample weights. Image and Vision Computing, 2009, 27, 80-86.	4.5	3
134	Hierarchical Classifiers for Robust Topological Robot Localization. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 68, 147-163.	3.4	3
135	Why Does Data-Driven Beat Theory-Driven Computer Vision?. , 2019, , .		3
136	Early recurrence enables figure border ownership. Vision Research, 2021, 186, 23-33.	1.4	3
137	Modeling task influences for saccade sequence and visual relevance prediction. Journal of Vision, 2019, 19, 106c.	0.3	3
138	Early Recurrence Improves Edge Detection. , 2013, , .		3
139	Second-Order (Non-Fourier) Attention-Based Face Detection. Lecture Notes in Computer Science, 2006, , 518-527.	1.3	3
140	Hierarchical Learning of Dominant Constellations for Object Class Recognition. , 2007, , 492-501.		3
141	Computation, PET images, and attention. Behavioral and Brain Sciences, 1995, 18, 372-372.	0.7	2
142	Knowledge difference and its influence on a search agent. , 1997, , .		2
143	Knowledge granularity and action selection. Lecture Notes in Computer Science, 1998, , 475-488.	1.3	2

Local feature analysis for robust face recognition. , 2009, , .

#	Article	IF	CITATIONS
145	Comparing neuronal and behavioral thresholds for spiral motion discrimination. NeuroReport, 2009, 20, 1619-1624.	1.2	2
146	Computational abstraction towards a theory of the brain. Current Biology, 2015, 25, R697-R700.	3.9	2
147	Sensor Planning for 3D Visual Search with Task Constraints. , 2016, , .		2
148	Rapid visual categorization is not guided by early salience-based selection. PLoS ONE, 2019, 14, e0224306.	2.5	2
149	The scope of motion research. Computer Graphics, 1984, 18, 7-11.	0.1	2
150	Neurobiological Models of Visual Attention. , 2002, , 229-237.		2
151	Separable Linear Classifiers for Online Learning in Appearance Based Object Detection. Lecture Notes in Computer Science, 2005, , 347-354.	1.3	2
152	Information Fusion for Multi-camera and Multi-body Structure and Motion. , 2007, , 385-396.		2
153	Connectionist computing and neural machinery: Examining the test of "timing― Behavioral and Brain Sciences, 1986, 9, 106-107.	0.7	1
154	<title>Decomposition and representation of planar curves using curvature-tuned smoothing</title> . , 1990, 1251, 142.		1
155	<title>TRISH: the Toronto-IRIS Stereo Head</title> . , 1992, , .		1
156	Priming and intrusion errors in RSVP streams with two response dimensions. Psychological Research, 2008, 72, 281-288.	1.7	1
157	Guest Editorial Representations and Architectures for Cognitive Systems. IEEE Transactions on Autonomous Mental Development, 2010, 2, 265-266.	1.6	1
158	Robot Localization in Rough Terrains: Performance Evaluation. , 2010, , .		1
159	Visual Representation in the Determination of Saliency. , 2011, , .		1
160	Recurrent Refinement for Visual Saliency Estimation in Surveillance Scenarios. , 2012, , .		1
161	Tracking Active Observers in 3D Visuo-Cognitive Tasks. , 2021, , .		1
162	Biologically Motivated Local Contextual Modulation Improves Low-Level Visual Feature Representations. Lecture Notes in Computer Science, 2012, , 79-88.	1.3	1

ARTICLE IF CITATIONS Visual Tasks Lead to Unique Sequences of Cyclic Attentional Signals. Journal of Vision, 2016, 16, 616. Attention in Stereo Vision., 0,, 65-88. 164 1 The Selective Tuning Model for Visual Attention., 2005, , 562-569. Flipped on its Head: Deep Learning-Based Saliency Finds Asymmetry in the Opposite Direction Expected 166 0.3 1 for Singleton Search of Flipped and Canonical Targets. Journal of Vision, 2019, 19, 318. Active Recognition., 2020, , 1-9. 168 Active Observers in a 3D World: The 3D Same-Different Task. Journal of Vision, 2020, 20, 253. 0.3 1 Blocks World Revisited: The Effect of Self-Occlusion on Classification by Convolutional Neural Networks., 2021,,. Exactly which emperor is Penrose talking about?. Behavioral and Brain Sciences, 1990, 13, 686-687. 170 0.7 0 DESIGN AND PERFORMANCE OF TRISH, A BINOCULAR ROBOT HEAD WITH TORSIONAL EYE MOVEMENTS. 171 0.1 Series in Machine Perception and Artificial Intelligence, 1993, , 51-68. <title>Temporal pattern recognition using one-memory-element-per-state sequential neural 172 0 network</title>., 1993, 1966, 176. <title>Detection function and its application in visual tracking</title>., 1997, , . Attentive selection penetrates (almost) the entire visual system. Behavioral and Brain Sciences, 1999, 174 0.7 0 22, 397-397. Motion Estimation Using a General Purpose Neural Network Simulator for Visual Attention. Proceedings IEEE Workshop on Applications of Computer Vision, 2007, , . Task and timing in visual processing. BMC Neuroscience, 2007, 8, . 176 1.9 0 Visual Place Categorization in Indoor Environments., 2012,,. Improved Edge Representation via Early Recurrent Inhibition., 2012,,. 178 0 Short and Long-Term Attentional Firing Rates Can Be Explained by ST-Neuron Dynamics. Frontiers in 179 2.8 Neuroscience, 2018, 12, 123.

180 Active Recognition. , 2021, , 15-23.

JOHN K TSOTSOS

#	Article	IF	CITATIONS
181	The Complexity of Visual Search Tasks. , 2002, , 185-194.		0
182	Feature Conjunctions in Visual Search. Lecture Notes in Computer Science, 2006, , 498-507.	1.3	0
183	Modeling the Dynamics of Feature Binding During Object-Selective Attention. Lecture Notes in Computer Science, 2007, , 325-337.	1.3	0
184	The Role of Attention in Shaping Visual Perceptual Processes. , 2011, , 5-21.		0
185	Selective Tuning: Overview. , 2011, , 80-96.		0
186	Attention, Recognition, and Binding. , 2011, , 132-150.		0
187	Explanations and Predictions. , 2011, , 192-231.		0
188	Selective Tuning: Formulation. , 2011, , 97-131.		0
189	Computational Foundations. , 2011, , 11-52.		0
190	Wrapping Up the Loose Ends. , 2011, , 232-249.		0
191	Theories and Models of Visual Attention. , 2011, , 53-79.		0
192	Selective Tuning: Examples and Performance. , 2011, , 151-191.		0
193	A PERFORMANCE EVALUATION OF ROBOT LOCALIZATION METHODS IN OUTDOOR TERRAINS. Series in Computer Vision, 2011, , 471-488.	0.1	0
194	Detecting, Representing and Attending to Visual Shape. , 2013, , 429-442.		0
195	Motion Understanding Systems. , 1992, , 1-22.		0
196	Real-time Model-based Tracking Using Perspective Alignment: Parallel Implementation and Stability Analysis. , 1995, , 291-311.		0
197	Feature-based surround suppression in the motion domain. Journal of Vision, 2017, 17, 44.	0.3	0
198	Attentional blink as a product of attentional control signals: A computational investigation. Journal of Vision, 2017, 17, 1197.	0.3	0

#	Article	IF	CITATIONS
199	Totally-Looks-Like: A Dataset and Benchmark of Semantic Image Similarity. Journal of Vision, 2018, 18, 136.	0.3	0
200	Border Ownership Assignment based on Dorsal and Horizontal Modulations. Journal of Vision, 2018, 18, 801.	0.3	0
201	Active Vision. , 2020, , 1-9.		0
202	The Roles of Endstopped and Curvature Tuned Computations in a Hierarchical Representation of 2D Shape. , 0, , 184-207.		0
203	The Roles of Endstopped and Curvature Tuned Computations in a Hierarchical Representation of 2D Shape. , 0, , 1338-1360.		0
204	Attention: The Messy Reality. Yale Journal of Biology and Medicine, 2019, 92, 127-137.	0.2	0