Pascal Ratet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6521137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Largeâ€scale insertional mutagenesis using the <i>Tnt1</i> retrotransposon in the model legume <i>Medicago truncatula</i> . Plant Journal, 2008, 54, 335-347.	5.7	442
2	Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase. Plant Physiology, 2007, 144, 324-335.	4.8	404
3	Rhizobium–legume symbioses: the crucial role of plant immunity. Trends in Plant Science, 2015, 20, 186-194.	8.8	279
4	A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Current Biology, 2012, 22, 2236-2241.	3.9	262
5	<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	5.7	211
6	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 24, 1345-1358.	2.6	147
7	IPD3 Controls the Formation of Nitrogen-Fixing Symbiosomes in Pea and <i>Medicago</i> Spp Molecular Plant-Microbe Interactions, 2011, 24, 1333-1344.	2.6	143
8	Control of Compound Leaf Development by <i>FLORICAULA/LEAFY</i> Ortholog <i>SINGLE LEAFLET1</i> in <i>Medicago truncatula</i> Â Â Â Â. Plant Physiology, 2008, 146, 1759-1772.	4.8	139
9	A WD40 Repeat Protein from <i>Medicago truncatula</i> Is Necessary for Tissue-Specific Anthocyanin and Proanthocyanidin Biosynthesis But Not for Trichome Development Â. Plant Physiology, 2009, 151, 1114-1129.	4.8	137
10	Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches. PLoS ONE, 2010, 5, e9519.	2.5	136
11	Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant Journal, 1996, 10, 91-105.	5.7	134
12	<i>STENOFOLIA</i> Regulates Blade Outgrowth and Leaf Vascular Patterning in <i>Medicago truncatula</i> and <i>Nicotiana sylvestris</i> Â Â Â. Plant Cell, 2011, 23, 2125-2142.	6.6	133
13	A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2014, 26, 1818-1830.	6.6	131
14	<i>Medicago truncatula </i> <scp>DNF</scp> 2 is a <scp>PI</scp> â€ <scp>PLC</scp> â€ <scp>XD</scp> â€containing protein required for bacteroid persistence and prevention of nodule early senescence and defenseâ€like reactions. New Phytologist, 2013, 197, 1250-1261.	7.3	128
15	Cell and Molecular Biology of Rhizobium-Plant. International Review of Cytology, 1994, 156, 1-75.	6.2	127
16	Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 2006, 142, 972-983.	4.8	121
17	<i>NODULE ROOT</i> and <i>COCHLEATA</i> Maintain Nodule Development and Are Legume Orthologs of <i>Arabidopsis BLADE-ON-PETIOLE</i> Genes. Plant Cell, 2012, 24, 4498-4510.	6.6	116
18	An efficient reverse genetics platform in the model legume <i><scp>M</scp>edicago truncatula</i> . New Phytologist, 2014, 201, 1065-1076.	7.3	113

#	Article	IF	CITATIONS
19	Loss of Abaxial Leaf Epicuticular Wax in <i>Medicago truncatula irg1/palm1</i> Mutants Results in Reduced Spore Differentiation of Anthracnose and Nonhost Rust Pathogens. Plant Cell, 2012, 24, 353-370.	6.6	112
20	Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 2005, 10, 229-235.	8.8	111
21	A <i>Medicago truncatula</i> Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation Â. Plant Physiology, 2012, 159, 1686-1699.	4.8	109
22	Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase. PLoS Genetics, 2014, 10, e1004891.	3.5	101
23	Production of Sinorhizobium meliloti nod Gene Activator and Repressor Flavonoids from Medicago sativa Roots. Molecular Plant-Microbe Interactions, 1998, 11, 784-794.	2.6	98
24	A non <scp>RD</scp> receptorâ€like kinase prevents nodule early senescence and defenseâ€like reactions during symbiosis. New Phytologist, 2014, 203, 1305-1314.	7.3	97
25	Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Methods in Molecular Biology, 2011, 678, 179-190.	0.9	81
26	Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10754-10759.	7.1	80
27	<i>Medicago truncatula</i> Transformation Using Leaf Explants. , 2006, 343, 115-128.		72
28	Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics, 2014, 15, 712.	2.8	70
29	Distinct response of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense-related responses. Plant Journal, 1997, 11, 277-287.	5.7	69
30	Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PLoS ONE, 2017, 12, e0174576.	2.5	67
31	Mutagenesis and Beyond! Tools for Understanding Legume Biology. Plant Physiology, 2009, 151, 978-984.	4.8	65
32	Multiple steps control immunity during the intracellular accommodation of rhizobia. Journal of Experimental Botany, 2015, 66, 1977-1985.	4.8	63
33	New plant promoter and enhancer testing vectors. Molecular Breeding, 1995, 1, 419-423.	2.1	60
34	Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Molecular Biology, 1995, 29, 773-786.	3.9	58
35	Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in <i>Medicago truncatula</i> . Plant Journal, 2009, 60, 102-111.	5.7	57
36	T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Molecular Breeding, 2002, 10, 203-215.	2.1	53

#	Article	IF	CITATIONS
37	<i>MERE1</i> , a Low-Copy-Number Copia-Type Retroelement in <i>Medicago truncatula</i> Active during Tissue Culture Â. Plant Physiology, 2009, 151, 1250-1263.	4.8	46
38	Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. New Phytologist, 2018, 219, 310-323.	7.3	46
39	From pollen tubes to infection threads: recruitment ofMedicagofloral pectic genes for symbiosis. Plant Journal, 2004, 39, 587-598.	5.7	42
40	Bigfoot: a new family of MITE elements characterized from theMedicagogenus. Plant Journal, 1999, 18, 431-441.	5.7	41
41	The <i>Compact Root Architecture1</i> Gene Regulates Lignification, Flavonoid Production, and Polar Auxin Transport in <i>Medicago truncatula</i> Â Ă. Plant Physiology, 2010, 153, 1597-1607.	4.8	41
42	Retroelement insertions at the <scp>M</scp> edicago <i>FTa1</i> locus in <i>spring</i> mutants eliminate vernalisation but not longâ€day requirements for early flowering. Plant Journal, 2013, 76, 580-591.	5.7	40
43	Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. Journal of Experimental Botany, 2015, 66, 1237-1244.	4.8	40
44	<i>MtNODULE ROOT1</i> and <i>MtNODULE ROOT2</i> Are Essential for Indeterminate Nodule Identity. Plant Physiology, 2018, 178, 295-316.	4.8	40
45	NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner. Genes, 2017, 8, 387.	2.4	39
46	<i>Sinorhizobium meliloti</i> succinylated highâ€molecularâ€weight succinoglycan and the <i>Medicago truncatula</i> LysM receptorâ€like kinase MtLYK10 participate independently in symbiotic infection. Plant Journal, 2020, 102, 311-326.	5.7	37
47	Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration. Plant Cell Reports, 2009, 28, 1563-1572.	5.6	35
48	Forward Genetics Screening of Medicago truncatula Tnt1 Insertion Lines. Methods in Molecular Biology, 2013, 1069, 93-100.	0.9	34
49	<i><scp>LOOSE FLOWER</scp></i> , a <i><scp>WUSCHEL</scp></i> â€like Homeobox gene, is required for lateral fusion of floral organs in <i>Medicago truncatula</i> . Plant Journal, 2015, 81, 480-492.	5.7	34
50	Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866.	2.5	34
51	An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Molecular Ecology, 2014, 23, 4846-4861.	3.9	33
52	<i>Lotus japonicus <scp>NOOT</scp>â€<scp>BOP</scp>â€<scp>COCH</scp>â€<scp>LIKE</scp>1</i> is essen for nodule, nectary, leaf and flower development. Plant Journal, 2018, 94, 880-894.	tial 5.7	32
53	Legume Nodules: Massive Infection in the Absence of Defense Induction. Molecular Plant-Microbe Interactions, 2019, 32, 35-44.	2.6	31
54	Fine Mapping Links the FTa1 Flowering Time Regulator to the Dominant Spring1 Locus in Medicago. PLoS ONE, 2013, 8, e53467.	2.5	30

#	Article	IF	CITATIONS
55	An Italian functional genomic resource for Medicago truncatula. BMC Research Notes, 2008, 1, 129.	1.4	28
56	Medicago truncatula Transformation Using Leaf Explants. Methods in Molecular Biology, 2015, 1223, 43-56.	0.9	27
57	Amaryllidaceae alkaloids: identification and partial characterization of montanine production in Rhodophiala bifida plant. Scientific Reports, 2019, 9, 8471.	3.3	25
58	The possible role of an [FeFe]-hydrogenase-like protein in the plant responses to changing atmospheric oxygen levels. Journal of Inorganic Biochemistry, 2008, 102, 1359-1365.	3.5	24
59	Control of Vegetative to Reproductive Phase Transition Improves Biomass Yield and Simultaneously Reduces Lignin Content in Medicago truncatula. Bioenergy Research, 2015, 8, 857-867.	3.9	23
60	The legume NOOT ―BOP ―COCH ―LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. New Phytologist, 2016, 209, 228-240.	7.3	23
61	Medicago-Sinorhizobium-Ralstonia Co-infection Reveals Legume Nodules as Pathogen Confined Infection Sites Developing Weak Defenses. Current Biology, 2020, 30, 351-358.e4.	3.9	23
62	<scp>GOLLUM</scp> [<scp><scp>FeFe</scp> </scp>]â€hydrogenaseâ€like proteins are essential for plant development in normoxic conditions and modulate energy metabolism. Plant, Cell and Environment, 2014, 37, 54-69.	5.7	22
63	A gene-based map of the Nod factor-independent <i>Aeschynomene evenia</i> sheds new light on the evolution of nodulation and legume genomes. DNA Research, 2016, 23, 365-376.	3.4	22
64	Multiple mutations in the transferred regions of the Agrobacterium rhizogenes root-inducing plasmids. Plasmid, 1986, 15, 245-247.	1.4	19
65	A Conserved Role for the NAM/miR164 Developmental Module Reveals a Common Mechanism Underlying Carpel Margin Fusion in Monocarpous and Syncarpous Eurosids. Frontiers in Plant Science, 2015, 6, 1239.	3.6	19
66	WUSCHEL Overexpression Promotes Callogenesis and Somatic Embryogenesis in Medicago truncatula Gaertn. Plants, 2021, 10, 715.	3.5	19
67	Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria. Current Genomics, 2011, 12, 147-152.	1.6	18
68	Expression of MsPG3-GFP fusions in Medicago truncatula'hairy roots' reveals preferential tip localization of the protein in root hairs. FEBS Journal, 2003, 270, 261-269.	0.2	17
69	Transformation of leguminous plants to study symbiotic interactions. International Journal of Developmental Biology, 2013, 57, 577-586.	0.6	17
70	MsEnod12A Expression Is Linked to Meristematic Activity During Development of Indeterminate and Determinate Nodules and Roots. Molecular Plant-Microbe Interactions, 1997, 10, 39-49.	2.6	16
71	Transgenic plants expressing the quorum quenching lactonase AttM do not significantly alter root-associated bacterial populations. Research in Microbiology, 2011, 162, 951-958.	2.1	15
72	To be or <i>noot</i> to be. Plant Signaling and Behavior, 2013, 8, e24969.	2.4	15

#	Article	IF	CITATIONS
73	The expression pattern of alfalfa flavanone 3-hydroxylase promoter-gus fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ. Plant Molecular Biology, 1996, 30, 1153-1168.	3.9	13
74	lsoflavone production in hairy root cultures and plantlets of Trifolium pratense. Biotechnology Letters, 2019, 41, 427-442.	2.2	13
75	Editorial: Molecular and Cellular Mechanisms of the Legume-Rhizobia Symbiosis. Frontiers in Plant Science, 2018, 9, 1839.	3.6	12
76	Flavanone 3-hydroxylase (F3H) Expression and Flavonoid Localization in Nodules of Three Legume Plants Reveal Distinct Tissue Specificities. Molecular Plant-Microbe Interactions, 1998, 11, 924-932.	2.6	11
77	Roles of <i>BdUNICULME4</i> and <i>BdLAXATUMâ€A</i> in the nonâ€domesticated grass <i>Brachypodium distachyon</i> . Plant Journal, 2020, 103, 645-659.	5.7	11
78	Regulation of Nitrogen Fixation (nif) Genes of Azorbizobium caulinodans ORS571 in Culture and in planta. Journal of Plant Physiology, 1988, 132, 405-411.	3.5	10
79	Gene Expression Is Not Systematically Linked to Phytoalexin Production During Alfalfa Leaf Interaction with Pathogenic Bacteria. Molecular Plant-Microbe Interactions, 1997, 10, 257-267.	2.6	9
80	Avoidance of detrimental defense responses in beneficial plant–microbe interactions. Current Opinion in Biotechnology, 2021, 70, 266-272.	6.6	8
81	Failure of self-control. Plant Signaling and Behavior, 2013, 8, e23915.	2.4	7
82	Ammonia regulated expression of a soybean gene encoding cytosolic glutamine synthetase is not conserved in two heterologous plant systems. Plant Science, 1997, 125, 75-85.	3.6	6
83	The low level of activity of Arabidopsis thaliana Tag1 transposon correlates with the absence of two minor transcripts in Medicago truncatula. Molecular Breeding, 2006, 17, 317-328.	2.1	6
84	Tnt1 retrotransposon as an efficient tool for development of an insertional mutant collection of Lotus japonicus. In Vitro Cellular and Developmental Biology - Plant, 2016, 52, 338-347.	2.1	6
85	MsPC3 polygalacturonase promoter elements necessary for expression during Sinorhizobium meliloti–Medicago truncatula interaction. Plant and Soil, 2003, 257, 19-26.	3.7	5
86	Nodule diversity, evolution, organogenesis and identity. Advances in Botanical Research, 2020, 94, 119-148.	1.1	5
87	Brachypodium distachyon UNICULME4 and LAXATUM-A are redundantly required for development. Plant Physiology, 2021, , .	4.8	4
88	Protocols for Growing Plant Symbioses; Rhizobia. Methods in Molecular Biology, 2013, 953, 61-75.	0.9	3
89	The complete genome sequence of Ensifer meliloti strain CCMM B554 (FSM-MA), a highly effective nitrogen-fixing microsymbiont of Medicago truncatula Gaertn. Standards in Genomic Sciences, 2017, 12, 75.	1.5	3
90	The Multiple Faces of the Medicago-Sinorhizobium Symbiosis. Methods in Molecular Biology, 2018, 1822, 241-260.	0.9	3

#	Article	IF	CITATIONS
91	Symbiosis Signaling: Solanaceae Symbiotic LCO Receptors Are Functional for Rhizobium Perception in Legumes. Current Biology, 2019, 29, R1312-R1314.	3.9	1