Silvia Maria Tagliapietra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polycyclic aromatic hydrocarbons in coffee samples: Enquiry into processes and analytical methods. Food Chemistry, 2021, 344, 128631.	8.2	23
2	Copper(0) nanoparticle catalyzed <i>Z</i> ‣elective Transfer Semihydrogenation of Internal Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 2850-2860.	4.3	6
3	SWCNT–porphyrin nano-hybrids selectively activated by ultrasound: an interesting model for sonodynamic applications. RSC Advances, 2020, 10, 21736-21744.	3.6	8
4	Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules, 2020, 25, 334.	3.8	73
5	Tuneable Copper Catalysed Transfer Hydrogenation of Nitrobenzenes to Aniline or Azo Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2689-2700.	4.3	15
6	Green Enabling Technologies for Competitive Synthesis of Pharmaceutical Lead Compounds. Current Pharmaceutical Design, 2020, 26, 5700-5712.	1.9	4
7	Microwave Irradiation in Micro―Mesoâ€Fluidic Systems; Hybrid Technology has Issued the Challenge. Chemical Record, 2019, 19, 98-117.	5.8	10
8	Green Protocols in Heterocycle Syntheses via 1,3-Dipolar Cycloadditions. Frontiers in Chemistry, 2019, 7, 95.	3.6	55
9	Harnessing cavitational effects for green process intensification. Ultrasonics Sonochemistry, 2019, 52, 530-546.	8.2	37
10	Synthesis and characterization of porphyrin functionalized nanodiamonds. Diamond and Related Materials, 2019, 91, 22-28.	3.9	9
11	Green Synthetic Procedures under Hydrodynamic and Acoustic Cavitation. RSC Green Chemistry, 2019, , 141-174.	0.1	1
12	Highly efficient nitrobenzene and alkyl/aryl azide reduction in stainless steel jars without catalyst addition. New Journal of Chemistry, 2018, 42, 18881-18888.	2.8	13
13	Microwave-Assisted, Green Synthesis of 4(3 <i>H</i>)-Quinazolinones under CO Pressure in Î ³ -Valerolactone and Reusable Pd/Î ² -Cyclodextrin Cross-Linked Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9233-9243.	6.7	22
14	Microwaveâ€Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrinâ€Grafted Reducedâ€Graphene Oxide. Chemistry - A European Journal, 2016, 22, 1608-1613.	3.3	15
15	Fast multigram scale microwave-assisted synthesis of vitamin E and C10-, C15-analogues under vacuum. RSC Advances, 2016, 6, 63515-63518.	3.6	3
16	Mechanochemical and sonochemical heterocyclizations. Chemistry of Heterocyclic Compounds, 2016, 52, 856-865.	1.2	7
17	Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Advances, 2016, 6, 46394-46405.	3.6	113
18	Combined Microwaves/Ultrasound, a Hybrid Technology. Topics in Current Chemistry, 2016, 374, 79.	5.8	19

#	Article	IF	CITATIONS
19	Extensive methodology screening of meso-tetrakys-(furan-2-yl)-porphyrin microwave-assisted synthesis. New Journal of Chemistry, 2016, 40, 2574-2581.	2.8	4
20	Enabling technologies built on a sonochemical platform: Challenges and opportunities. Ultrasonics Sonochemistry, 2015, 25, 8-16.	8.2	42
21	Catalysis in glycerol: a survey of recent advances. Chemical Papers, 2015, 69, .	2.2	18
22	Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry, 2014, 16, 1056.	9.0	79
23	A novel SWCNT platform bearing DOTA and β-cyclodextrin units. "One shot―multidecoration under microwave irradiation. Organic and Biomolecular Chemistry, 2014, 12, 4708-4715.	2.8	13
24	Pd/C-catalyzed aerobic oxidative esteriffation of alcohols and aldehydes: a highly efficient microwave-assisted green protocol. Beilstein Journal of Organic Chemistry, 2014, 10, 1454-1461.	2.2	24
25	A simple, efficient, regioselective and one-pot preparation of N-hydroxy- and N–O-protected hydroxyindoles via cycloaddition of nitrosoarenes with alkynes. Synthetic scope, applications and novel by-products. Tetrahedron, 2013, 69, 10906-10920.	1.9	29
26	Esterification of Terpene Alcohols Catalyzed by Acidic BrÃ,nsted Ionic Liquids. Organic Preparations and Procedures International, 2012, 44, 175-179.	1.3	3
27	Functionalization of Single-Walled Carbon Nanotubes through 1,3-CycloÂaddition of Carbonyl Ylides under Microwave Irradiation. Synlett, 2012, 23, 1459-1462.	1.8	9
28	A green approach to heterogeneous catalysis using ligand-free, metal-loaded cross-linked cyclodextrins. Green Processing and Synthesis, 2012, 1, .	3.4	13
29	Suzuki cross-couplings of (hetero)aryl chlorides in the solid-state. New Journal of Chemistry, 2012, 36, 1304.	2.8	60
30	Filling the gap: Chemistry of 3,5-bis(trifluoromethyl)-1H-pyrazoles. Journal of Fluorine Chemistry, 2012, 139, 53-57.	1.7	28
31	Click Chemistry Under Microwave or Ultrasound Irradiation. Current Organic Chemistry, 2011, 15, 189-203.	1.6	36
32	Synthesis of water-soluble multidentate aminoalcohol β-cyclodextrin derivatives via epoxide opening. Carbohydrate Research, 2011, 346, 2677-2682.	2.3	6
33	Ultrasound-enhanced one-pot synthesis of 3-(Het)arylmethyl-4-hydroxycoumarins in water. Ultrasonics Sonochemistry, 2011, 18, 652-660.	8.2	23
34	Ytterbium triflate catalyzed synthesis of β-functionalized indole derivatives. Tetrahedron Letters, 2011, 52, 568-571.	1.4	26
35	Intensification of organic reactions with hybrid flow reactors. Chemical Engineering and Processing: Process Intensification, 2010, 49, 930-935.	3.6	17
36	Alkyne–azide click reaction catalyzed by metallic copper under ultrasound. Nature Protocols, 2010, 5, 607-616.	12.0	103

#	Article	IF	CITATIONS
37	Straightforward Functionalization of 3,5-Dichloro-2-pyrazinones under Simultaneous Microwave and Ultrasound Irradiation. Synthesis, 2010, 2010, 136-140.	2.3	5
38	Structure and Self-Aggregation of Mono- and Bis(cyclodextrin) Derivatives in Aqueous Media: Fluorescence, Induced Circular Dichroism, and Molecular Dynamics. Journal of Physical Chemistry C, 2010, 114, 22431-22440.	3.1	11
39	Umbelliferone aminoalkyl derivatives as inhibitors of human oxidosqualene-lanosterol cyclase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 589-598.	5.2	12
40	Pd-catalyzed Reactions Promoted by Ultrasound and/or Microwave Irradiation. Current Organic Chemistry, 2008, 12, 1588-1612.	1.6	39
41	A New Access to Homo- and Heterodimers of α-, β-, and γ-Cyclodextrin by a Microwave-Promoted Huisgen Cycloaddition. Synlett, 2008, 2008, 2642-2646.	1.8	17
42	Efficient Regioselective Opening of Epoxides by Nucleophiles in Water under Simultaneous Ultrasound/Microwave Irradiation. Synlett, 2007, 2007, 2041-2044.	1.8	1
43	Inhibitory Effect of Umbelliferone Aminoalkyl Derivatives on Oxidosqualene Cyclases fromS.â€cerevisiae,T.â€cruzi,P.â€carinii,H.â€sapiens, andA.â€thaliana: a Structure–Activity Study. Cł 2007, 2, 226-233.	hen s M⊴edCh	nem16
44	Cyclization reactions of coumarin derivatives: Chemo―and regioselectivity effects of oxygen/sulfur isosteric replacement. Journal of Heterocyclic Chemistry, 2007, 44, 411-418.	2.6	5
45	New paramagnetic supramolecular adducts for MRI applications based on non-covalent interactions between Gd(III)-complexes and β- or γ-cyclodextrin units anchored to chitosan. Journal of Inorganic Biochemistry, 2006, 100, 931-938.	3.5	31
46	Long-Chain 3-Acyl-4-hydroxycoumarins: Structure and Antibacterial Activity. Archiv Der Pharmazie, 2006, 339, 129-132.	4.1	18
47	Chemical modification of chitosan under high-intensity ultrasound. Ultrasonics Sonochemistry, 2005, 12, 95-98.	8.2	66
48	Novel Squalene-Hopene Cyclase Inhibitors Derived from Hydroxycoumarins and Hydroxyacetophenones ChemInform, 2005, 36, no.	0.0	0
49	Umbelliferone aminoalkyl derivatives as inhibitors of oxidosqualene cyclases from Saccharomyces cerevisiae, Tripanosoma cruzi, and Pneumocystis carinii. Lipids, 2004, 39, 1007-1012.	1.7	19
50	The Aldol Reaction under High-Intensity Ultrasound: A Novel Approach to an Old Reaction ChemInform, 2004, 35, no.	0.0	0
51	New chiral selectors: Design and synthesis of 6-TBDMS-2,3-methyl ?-cyclodextrin 2-2? thioureido dimer and 6-TBDMS-2,3-methyl (or 2-methyl-3-acetyl) ?-cyclodextrin bearing an (R) mosher acid moiety. Chirality, 2004, 16, 526-533.	2.6	12
52	Umbelliferone aminoalkyl derivatives, a new class of squalene-hopene cyclase inhibitors. European Journal of Medicinal Chemistry, 2004, 39, 917-924.	5.5	15
53	Novel Squalene-Hopene Cyclase Inhibitors Derived from Hydroxycoumarins and Hydroxyacetophenones. Chemical and Pharmaceutical Bulletin, 2004, 52, 1171-1174.	1.3	11
54	The Aldol Reaction under High-Intensity Ultrasound: A Novel Approach to an Old Reaction. European Journal of Organic Chemistry, 2003, 2003, 4438-4444.	2.4	67

Silvia Maria Tagliapietra

#	Article	IF	CITATIONS
55	4-Hydroxycoumarin and Related Systems: Sitoselectivity of the Mitsunobu Reaction with Prenyl Alcohols ChemInform, 2003, 34, no.	0.0	1
56	4-Hydroxycoumarin and Related Systems: Sitoselectivity of the Mitsunobu Reaction with Prenyl Alcohols. Heterocycles, 2003, 60, 1351.	0.7	10
57	An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron: Asymmetry, 2001, 12, 707-709.	1.8	162
58	A library of pyranocoumarin derivatives <i>via</i> a oneâ€pot threeâ€component hetero dielsâ€alder reaction. Journal of Heterocyclic Chemistry, 2001, 38, 965-971.	2.6	17
59	Reaction of 4-Hydroxycoumarin with α,β-Unsaturated Iminium Salts: A Straightforward, Regioselective Entry to Pyranocoumarin Derivatives. Synthesis, 2001, 2001, 0049-0051.	2.3	34
60	Synthesis of Selectively Permodified γ–Cyclodextrins. A New Set of Chiral Stationary Phases in Capillary GC. Journal of Carbohydrate Chemistry, 2000, 19, 1235-1245.	1.1	10
61	NMR and computational study on the anomeric effect incis/trans-3,4-dihydro-2-alkoxy-4-substituted-2H,5H-pyrano[3,2-c][1]benzopyran-5-one derivatives. Magnetic Resonance in Chemistry, 1997, 35, 721-729.	1.9	4
62	The Thermal Dimerization of Pyrano[3,2-c]coumarins. Heterocycles, 1997, 45, 949.	0.7	0
63	Sesquiterpene coumarin ethers from asafetida. Phytochemistry, 1993, 35, 183-186.	2.9	47
64	Taxanes from the Seeds of Taxus baccata. Journal of Natural Products, 1993, 56, 514-520.	3.0	45
65	A sesquiterpene alcohol from the fruits of Laurus nobilis. Phytochemistry, 1992, 31, 2537-2538.	2.9	20
66	Coumarins from Heptaptera anisoptera. Phytochemistry, 1992, 31, 3211-3213.	2.9	15
67	Electron impact fragmentation of pyranocoumarin derivatives. Tandem mass spectrometric study of abundant singly and doubly charged fragment ions at high and low collision energy. Organic Mass Spectrometry, 1992, 27, 597-603.	1.3	3
68	The chemistry of coumarin derivatives. Part 3. Synthesis of 3-alkyl-4-hydroxycoumarins by reductive fragmentation of 3,3?-alkyiidene-4,4?-dihydroxybis[coumarins]. Helvetica Chimica Acta, 1991, 74, 1451-1458.	1.6	34
69	The chemistry of coumarin derivatives, part 2. Reaction of 4-hydroxycoumarin with ?,?-unsaturated aldehydes. Helvetica Chimica Acta, 1990, 73, 1865-1878.	1.6	42
70	Sesquiterpenoid esters from the fruits of Ferula communis. Phytochemistry, 1990, 29, 1481-1484.	2.9	15
71	Reaction of 4-hydroxycoumarin derivatives with activated dimethyl sulphoxide. Journal of the Chemical Society Perkin Transactions 1, 1989, , 2305.	0.9	4
72	Ϊ‰-Oxygenated prenylated coumarins from Ferula communis. Phytochemistry, 1988, 27, 3619-3624.	2.9	51

#	Article	IF	CITATIONS
73	Ferprenin, a prenylated coumarin from Ferula communis. Phytochemistry, 1988, 27, 944-946.	2.9	50