
Kelvin Y Kwan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broad activation of the Parkin pathway induces synaptic mitochondrial deficits in early tauopathy. Brain, 2022, 145, 305-323.	7.6	16
2	Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA. Nature Communications, 2022, 13, 889.	12.8	15
3	Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer's disease. Cell Stem Cell, 2022, 29, 1135-1153.e8.	11.1	45
4	Understanding the differentiation and epigenetics of cochlear sensory progenitors in pursuit of regeneration. Current Opinion in Otolaryngology and Head and Neck Surgery, 2021, 29, 366-372.	1.8	2
5	Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nature Communications, 2020, 11, 1577.	12.8	108
6	Single-Cell Fluorescence Analysis of Pseudotemporal Ordered Cells Provides Protein Expression Dynamics for Neuronal Differentiation. Frontiers in Cell and Developmental Biology, 2019, 7, 87.	3.7	3
7	Developments in Bio-Inspired Nanomaterials for Therapeutic Delivery to Treat Hearing Loss. Frontiers in Cellular Neuroscience, 2019, 13, 493.	3.7	26
8	Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. Journal of Biological Chemistry, 2018, 293, 15581-15593.	3.4	18
9	Single-Cell Transcriptome Analysis of Neural Stem Cells. Current Pharmacology Reports, 2017, 3, 68-76.	3.0	3
10	SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E307-E316.	7.1	67
11	NEUROG1 Regulates CDK2 to Promote Proliferation in Otic Progenitors. Stem Cell Reports, 2017, 9, 1516-1529.	4.8	27
12	Activation of CHK1 in Supporting Cells Indirectly Promotes Hair Cell Survival. Frontiers in Cellular Neuroscience, 2017, 11, 137.	3.7	16
13	Sensory Neuron-Specific Deletion of TRPA1 Results in Mechanical Cutaneous Sensory Deficits. ENeuro, 2017, 4, ENEURO.0069-16.2017.	1.9	46
14	Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells. PLoS ONE, 2017, 12, e0180855.	2.5	15
15	Transcriptional Regulation of Notch1 Expression by Nkx6.1 in Neural Stem/Progenitor Cells during Ventral Spinal Cord Development. Scientific Reports, 2016, 6, 38665.	3.3	18
16	Tryptophanâ€rich basic protein (<scp>WRB</scp>) mediates insertion of the tailâ€anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO Journal, 2016, 35, 2536-2552.	7.8	55
17	Single-Cell Transcriptome Analysis of Developing and Regenerating Spiral Ganglion Neurons. Current Pharmacology Reports, 2016, 2, 211-220.	3.0	9
18	Initiating Differentiation in Immortalized Multipotent Otic Progenitor Cells. Journal of Visualized Experiments, 2016, , .	0.3	6

Kelvin Y Kwan

#	Article	IF	CITATIONS
19	Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea. Biology Open, 2016, 5, 698-708.	1.2	24
20	Detection of Murine TRPA1 Transcripts in Keratinocytes. Journal of Skin and Stem Cell, 2016, 3, .	0.2	0
21	Detection of Murine TRPA1 Transcripts in Keratinocytes. Journal of Skin and Stem Cell, 2016, In Press, .	0.2	0
22	Induction of Stemâ€Cellâ€Đerived Functional Neurons by NanoScriptâ€Based Gene Repression. Angewandte Chemie - International Edition, 2015, 54, 11983-11988.	13.8	18
23	SHIELD: an integrative gene expression database for inner ear research. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav071.	3.0	128
24	C-MYC Transcriptionally Amplifies SOX2 Target Genes to Regulate Self-Renewal in Multipotent Otic Progenitor Cells. Stem Cell Reports, 2015, 4, 47-60.	4.8	75
25	Abstract 5098: GFP compatibility with EdU cell proliferation assay. , 2014, , .		0
26	TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nature Neuroscience, 2012, 15, 70-80.	14.8	391
27	Lights, camera, surgery: a novel pilot project to engage medical students in the development of pediatric surgical learning resources. Journal of Pediatric Surgery, 2011, 46, 962-965.	1.6	5
28	Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation. Journal of General Physiology, 2009, 133, 251-256.	1.9	64
29	TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1273-1278.	7.1	503
30	TRPA1 Modulates Mechanotransduction in Cutaneous Sensory Neurons. Journal of Neuroscience, 2009, 29, 4808-4819.	3.6	280
31	The Ion Channel TRPA1 Is Required for Normal Mechanosensation and Is Modulated by Algesic Stimuli. Gastroenterology, 2009, 137, 2084-2095.e3.	1.3	232
32	50 Novel and Specific Roles for the Ion Channel TRPA1 in Visceral Sensory Transduction. Gastroenterology, 2008, 134, A-8.	1.3	2
33	Defective p53 engagement after the induction of DNA damage in cells deficient in topoisomerase 3β. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5063-5068.	7.1	24
34	The Micromachinery of Mechanotransduction in Hair Cells. Annual Review of Neuroscience, 2007, 30, 339-365.	10.7	199
35	Development of autoimmunity in mice lacking DNA topoisomerase 3beta. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9242-9247.	7.1	29
36	An Ion Channel Essential for Sensing Chemical Damage. Journal of Neuroscience, 2007, 27, 11412-11415.	3.6	254

Kelvin Y Kwan

#	Article	IF	CITATIONS
37	TRPA1 Contributes to Cold, Mechanical, and Chemical Nociception but Is Not Essential for Hair-Cell Transduction. Neuron, 2006, 50, 277-289.	8.1	1,134
38	TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 2004, 432, 723-730.	27.8	657
39	Infertility and aneuploidy in mice lacking a type IA DNA topoisomerase IIIβ. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2526-2531.	7.1	67
40	Mice lacking DNA topoisomerase IIIÎ ² develop to maturity but show a reduced mean lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5717-5721.	7.1	106
41	Unwinding of theEscherichia coliOrigin of Replication (oriC) Can Occur in the Absence of Initiation Proteins but Is Stabilized by DnaA and Histone-like Proteins IHF or HU. Plasmid, 1998, 39, 77-83.	1.4	13
42	GATC motifs may alter the conformation of DNA depending on sequence context and N6-adenine methylation status: possible implications for DNA-protein recognition. Molecular Genetics and Genomics, 1998, 258, 488-493.	2.4	46
43	Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli. Molecular Microbiology, 1997, 26, 261-275.	2.5	47