Hans Christian B Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. Journal of Environmental Quality, 2009, 38, 1942-1955.	2.0	287
2	Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 2018, 237, 650-661.	7.5	269
3	Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochimica Et Cosmochimica Acta, 1994, 58, 2599-2608.	3.9	223

Reductive Dechlorination of Carbon Tetrachloride Using Iron(II) Iron(III) Hydroxide Sulfate (Green) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

5	Sorption of zinc and lead on coir. Bioresource Technology, 2007, 98, 89-97.	9.6	188
6	Kinetics of nitrate reduction by green rusts—effects of interlayer anion and Fe(II):Fe(III) ratio. Applied Clay Science, 2001, 18, 81-91.	5.2	166
7	pHâ€Dependent Release of Cadmium, Copper, and Lead from Natural and Sludgeâ€Amended Soils. Journal of Environmental Quality, 2002, 31, 1901-1909.	2.0	120
8	Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Research, 2007, 41, 55-62.	11.3	116
9	Effect of natural organic soil solutes on weathering rates of soil minerals. European Journal of Soil Science, 1998, 49, 397-406.	3.9	108
10	Copper Resistance in Enterococcus faecium, Mediated by the tcrB Gene, Is Selected by Supplementation of Pig Feed with Copper Sulfate. Applied and Environmental Microbiology, 2006, 72, 5784-5789.	3.1	106
11	Title is missing!. Biogeochemistry, 2001, 56, 1-26.	3.5	93
12	Degradation of 4-Chloro-2-Methylphenoxyacetic Acid in Top- and Subsoil Is Quantitatively Linked to the Class III tfdA Gene. Applied and Environmental Microbiology, 2006, 72, 1476-1486.	3.1	88
13	Synthesis and characterization of pyroaurite. Applied Clay Science, 1995, 10, 5-19.	5.2	83
14	Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science, 2005, 56, 189-196.	3.9	80
15	Cadmium and copper release kinetics in relation to afforestation of cultivated soil. Geochimica Et Cosmochimica Acta, 2001, 65, 1233-1242.	3.9	78
16	Distribution of multiple pesticide residues in apple segments after home processing. Food Additives and Contaminants, 2003, 20, 1044-1063.	2.0	78
17	Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polymer Degradation and Stability, 2010, 95, 2563-2573.	5.8	78
18	High-resolution imaging of labile phosphorus and its relationship with iron redox state in lake sediments. Environmental Pollution, 2016, 219, 466-474.	7.5	67

#	Article	IF	CITATIONS
19	Interaction of Synthetic Sulphate "Green Rust―with Phosphate and the Crystallization of Vivianite. Clays and Clay Minerals, 1999, 47, 312-318.	1.3	66
20	Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal. Journal of Materials Chemistry A, 2015, 3, 7505-7512.	10.3	65
21	Sorption, degradation and mobility of ptaquiloside, a carcinogenic Bracken (Pteridium sp.) constituent, in the soil environment. Chemosphere, 2005, 58, 823-835.	8.2	64
22	Melt processing of poly(<scp>L</scp> â€lactic acid) in the presence of organomodified anionic or cationic clays. Journal of Applied Polymer Science, 2011, 122, 112-125.	2.6	64
23	Vivianite Precipitation and Phosphate Sorption following Iron Reduction in Anoxic Soils. Journal of Environmental Quality, 2012, 41, 938-949.	2.0	63
24	Synthesis and Properties of Hexacyanoferrate Interlayered in Hydrotalcite. I. Hexacyanoferrate(II). Clays and Clay Minerals, 1994, 42, 170-179.	1.3	58
25	Occurrence of the carcinogenic Bracken constituent ptaquiloside in fronds, topsoils and organic soil layers in Denmark. Chemosphere, 2003, 51, 117-127.	8.2	56
26	Biotransformation of 2-Benzoxazolinone to 2-Amino-(3H)-Phenoxazin-3-one and 2-Acetylamino-(3H)-Phenoxazin-3-one in Soil. Journal of Chemical Ecology, 2005, 31, 1205-1222.	1.8	52
27	Synthesis and Characterization of Cobalt(II)-Iron(III) Hydroxide Carbonate, a Layered Double Hydroxide Belonging to the Pyroaurite Group. Journal of Solid State Chemistry, 1994, 113, 46-53.	2.9	50
28	Degradation of chlorpyrifos in humid tropical soils. Journal of Environmental Management, 2013, 125, 28-32.	7.8	50
29	Fast Dechlorination of Chlorinated Ethylenes by Green Rust in the Presence of Bone Char. Environmental Science and Technology Letters, 2019, 6, 191-196.	8.7	50
30	Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecological Engineering, 2012, 46, 75-87.	3.6	48
31	Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes. Geoderma, 2012, 173-174, 311-321.	5.1	47
32	Determination of anions in soil solutions by capillary zone electrophoresis. Analyst, The, 1998, 123, 721-724.	3.5	46
33	Biopore Mediated Subsurface Transport of Dissolved Orthophosphate. Journal of Environmental Quality, 1998, 27, 1130-1137.	2.0	44
34	DEGRADATION KINETICS OF GLUCOSINOLATES IN SOIL. Environmental Toxicology and Chemistry, 2006, 25, 2038.	4.3	44
35	Bone Char Mediated Dechlorination of Trichloroethylene by Green Rust. Environmental Science & Technology, 2020, 54, 3643-3652.	10.0	44
36	Distribution and fractionation of heavy metals in pairs of arable and afforested soils in Denmark. European Journal of Soil Science, 2002, 53, 491-502.	3.9	43

3

#	Article	IF	CITATIONS
37	Metals in surface specific urban runoff in Beijing. Environmental Pollution, 2019, 248, 584-598.	7.5	43

$_{38}$ Distribution of the carcinogenic terpene ptaquiloside in bracken fronds, rhizomes (Pteridium) Tj ETQq0 0 0 rgBT /Oyerlock 10_{42} Tf 50 702

39	Dissipation of acephate, chlorpyrifos, cypermethrin and their metabolites in a humidâ€tropical vegetable production system. Pest Management Science, 2009, 65, 189-196.	3.4	42
40	A Comparative Study of Phosphate Sorption in Lowland Soils under Oxic and Anoxic Conditions. Journal of Environmental Quality, 2010, 39, 734-743.	2.0	41
41	Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts). Journal of Colloid and Interface Science, 2017, 497, 429-438.	9.4	41
42	Degradation and ecotoxicity of the biomedical drug artemisinin in soil. Environmental Toxicology and Chemistry, 2009, 28, 701-710.	4.3	40
43	Biomedicine in the environment: Cyclotides constitute potent natural toxins in plants and soil bacteria. Environmental Toxicology and Chemistry, 2011, 30, 1190-1196.	4.3	39
44	Multi-elemental speciation analysis of barley genotypes differing in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 996.	3.0	38
45	Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY. Soil Biology and Biochemistry, 2008, 40, 1506-1518.	8.8	38
46	Efficient Dechlorination of Carbon Tetrachloride by Hydrophobic Green Rust Intercalated with Dodecanoate Anions. Environmental Science & Technology, 2012, 46, 3390-3397.	10.0	37
47	Composition, Flavor, Chemical Foodsafety, and Consumer Preferences of Bottled Water. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352.	11.7	37
47 48	Composition, Flavor, Chemical Foodsafety, and Consumer Preferences of Bottled Water. Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352. Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852.	11.7 2.2	37 36
	Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352. Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf.		
48	Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352. Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852. Dissolution kinetics of pyroaurite-type layered double hydroxide doped with Zn: Perspectives for pH	2.2	36
48 49	Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352. Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852. Dissolution kinetics of pyroaurite-type layered double hydroxide doped with Zn: Perspectives for pH controlled micronutrient release. Applied Clay Science, 2016, 123, 56-63. Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase.	2.2 5.2	36 36
48 49 50	Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352. Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852. Dissolution kinetics of pyroaurite-type layered double hydroxide doped with Zn: Perspectives for pH controlled micronutrient release. Applied Clay Science, 2016, 123, 56-63. Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation, 2006, 17, 503-510. Quantification of Ptaquiloside and Pterosin B in Soil and Groundwater Using Liquid Chromatographyâ~Tandem Mass Spectrometry (LCâ~MS/MS). Journal of Agricultural and Food	2.2 5.2 3.0	36 36 35
48 49 50 51	Comprehensive Reviews in Food Science and Food Safety, 2013, 12, 333-352. Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852. Dissolution kinetics of pyroaurite-type layered double hydroxide doped with Zn: Perspectives for pH controlled micronutrient release. Applied Clay Science, 2016, 123, 56-63. Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation, 2006, 17, 503-510. Quantification of Ptaquiloside and Pterosin B in Soil and Groundwater Using Liquid Chromatographyâ^Tandem Mass Spectrometry (LCâ°MS/MS). Journal of Agricultural and Food Chemistry, 2008, 56, 9848-9854. Single sheet iron oxide: An efficient heterogeneous electro-Fenton catalyst at neutral pH. Journal of	2.2 5.2 3.0 5.2	36 36 35 35

#	Article	IF	CITATIONS
55	Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure. Environmental Pollution, 2007, 148, 343-351.	7.5	34
56	Degradation of zearalenone and ochratoxin A in three Danish agricultural soils. Chemosphere, 2006, 62, 1673-1680.	8.2	33
57	Degradation and mineralization kinetics of acephate in humid tropic soils of Malaysia. Chemosphere, 2010, 79, 434-440.	8.2	33
58	Soil Sorption of Nickel in presence of Citrate or Arginine. Water, Air, and Soil Pollution, 2000, 120, 249-259.	2.4	32
59	Metabolic effects in rapeseed (Brassica napus L.) seedlings after root exposure to glyphosate. Pesticide Biochemistry and Physiology, 2007, 89, 220-229.	3.6	32
60	Water level fluctuations may decrease phosphate adsorption capacity of the sediment in oligotrophic high mountain lakes. Hydrobiologia, 2010, 651, 253-264.	2.0	32
61	Intercalation of linear C9–C16 carboxylates in layered Fell–FellI-hydroxides (green rust) via ion exchange. Applied Clay Science, 2010, 48, 334-341.	5.2	32
62	Determination of zearalenone and ochratoxin A in soil. Analytical and Bioanalytical Chemistry, 2003, 376, 98-101.	3.7	31
63	Pteridium aquilinum and Its Ptaquiloside Toxin Induce DNA Damage Response in Gastric Epithelial Cells, a Link With Gastric Carcinogenesis. Toxicological Sciences, 2012, 126, 60-71.	3.1	31
64	The naturally occurring carcinogen ptaquiloside is present in groundwater below bracken vegetation. Environmental Toxicology and Chemistry, 2014, 33, 1030-1034.	4.3	31
65	Layered Double Hydroxides: Potential Release-on-Demand Fertilizers for Plant Zinc Nutrition. Journal of Agricultural and Food Chemistry, 2017, 65, 8779-8789.	5.2	31
66	Formation and Degradation Kinetics of the Biofumigant Benzyl Isothiocyanate in Soil. Environmental Science & Technology, 2007, 41, 4271-4276.	10.0	30
67	A Silicate/Glycine Switch To Control the Reactivity of Layered Iron(II)–Iron(III) Hydroxides for Dechlorination of Carbon Tetrachloride. Environmental Science & Technology, 2018, 52, 7876-7883.	10.0	30
68	Phosphate and Tritium Transport through Undisturbed Subsoil as Affected by Ionic Strength. Journal of Environmental Quality, 1998, 27, 139-145.	2.0	29
69	Content, Distribution, and Solubility of Cadmium in Arable and Forest Soils. Soil Science Society of America Journal, 2002, 66, 1829.	2.2	29
70	Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes. Journal of Hazardous Materials, 2016, 306, 175-183.	12.4	29
71	Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils. Chemosphere, 2017, 172, 316-324.	8.2	29
72	Where does the toxicity come from in saponin extract?. Chemosphere, 2018, 204, 243-250.	8.2	29

#	Article	IF	CITATIONS
73	Biochar catalyzed dechlorination – Which biochar properties matter?. Journal of Hazardous Materials, 2021, 406, 124724.	12.4	28
74	Rare earth elements in surface specific urban runoff in Northern Beijing. Science of the Total Environment, 2020, 717, 136969.	8.0	27
75	Leaching of cyanogenic glucosides and cyanide from white clover green manure. Chemosphere, 2008, 72, 897-904.	8.2	26
76	DEGRADATION AND SORPTION OF 2-PROPENYL AND BENZYL ISOTHIOCYANATE IN SOIL. Environmental Toxicology and Chemistry, 2009, 28, 1178.	4.3	26
77	The effect of pH and storage on copper speciation and bacterial growth in complex growth media. Journal of Microbiological Methods, 2009, 78, 20-24.	1.6	26
78	Determination of ptaquiloside and pterosin B derived from bracken (Pteridium aquilinum) in cattle plasma, urine and milk. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 951-952, 44-51.	2.3	26
79	What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides?. Environmental Pollution, 2018, 236, 416-424.	7.5	26
80	Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers. European Journal of Inorganic Chemistry, 2013, 2013, 5718-5727.	2.0	24
81	Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk. Environmental Pollution, 2022, 299, 118911.	7.5	24
82	Degradation kinetics of ptaquiloside in soil and soil solution. Environmental Toxicology and Chemistry, 2008, 27, 252-259.	4.3	23
83	The pH-dependent adsorption of tributyltin to charcoals and soot. Environmental Pollution, 2010, 158, 3642-3649.	7.5	23
84	Hierarchical MoS ₂ nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination. Environmental Science: Nano, 2017, 4, 2286-2296.	4.3	23
85	Experimental Assessment of Using Soluble Humic Substances for Remediation of Heavy Metal Polluted Soils. Soil and Sediment Contamination, 2009, 18, 369-382.	1.9	22
86	One-pot synthesis and characterization of Fell–FellI hydroxide (green rust) intercalated with C9–C14 linear alkyl carboxylates. Applied Clay Science, 2010, 50, 512-519.	5.2	22
87	Ptaquiloside in Irish Bracken Ferns and Receiving Waters, with Implications for Land Managers. Molecules, 2016, 21, 543.	3.8	22
88	Toxicity and uptake of TRI―and dibutyltin in <i>Daphnia magna</i> in the absence and presence of nanoâ€charcoal. Environmental Toxicology and Chemistry, 2011, 30, 2553-2561.	4.3	21
89	Land management of bracken needs to account for bracken carcinogens – A case study from Britain. Journal of Environmental Management, 2015, 151, 258-266.	7.8	21
90	DGT technique to assess P mobilization from greenhouse vegetable soils in China: A novel approach. Science of the Total Environment, 2018, 630, 331-339.	8.0	21

#	Article	IF	CITATIONS
91	Empirical modelling of the kinetics of phosphate sorption to macropore materials in aggregated subsoils. European Journal of Soil Science, 1999, 50, 317-327.	3.9	20
92	Rate of hydrolysis and degradation of the cyanogenic glycoside – dhurrin – in soil. Chemosphere, 2007, 67, 259-266.	8.2	20
93	The Standard Gibbs Energy of Formation of Fe(II)Fe(III) Hydroxide Sulfate Green Rust. Clays and Clay Minerals, 2008, 56, 633-644.	1.3	20
94	Adsorption of arsenic(V) onto single sheet iron oxide: X-ray absorption fine structure and surface complexation. Journal of Colloid and Interface Science, 2019, 554, 433-443.	9.4	20
95	The toxic effects of benzyl glucosinolate and its hydrolysis product, the biofumigant benzyl isothiocyanate, toFolsomia fimetaria. Environmental Toxicology and Chemistry, 2010, 29, 359-364.	4.3	19
96	A one-step delamination procedure to form single sheet iron(iii)-(oxy)hydroxides. Journal of Materials Chemistry A, 2013, 1, 13664.	10.3	19
97	Graphene oxide-mediated rapid dechlorination of carbon tetrachloride by green rust. Journal of Hazardous Materials, 2017, 323, 690-697.	12.4	19
98	Copper-mediated reductive dechlorination by green rust intercalated with dodecanoate. Journal of Hazardous Materials, 2018, 345, 18-26.	12.4	19
99	Fate of Toxic Potato Glycoalkaloids in a Potato Field. Journal of Agricultural and Food Chemistry, 2009, 57, 2862-2867.	5.2	18
100	High affinity lanthanum doped iron oxide nanosheets for phosphate removal. Chemical Engineering Journal, 2021, 422, 130009.	12.7	18
101	Phosphate Leaching Responses from Unperturbed, Anaerobic, or Cattle Manured Mesotrophic Sandy Loam Soils. Journal of Environmental Quality, 1999, 28, 1796-1803.	2.0	17
102	Mineralization of benzyl glucosinolate and its hydrolysis product the biofumigant benzyl isothiocyanate in soil. Soil Biology and Biochemistry, 2008, 40, 135-141.	8.8	17
103	Fast LC-MS quantification of ptesculentoside, caudatoside, ptaquiloside and corresponding pterosins in bracken ferns. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1138, 121966.	2.3	17
104	Phosphate Leaching from Intact Soil Column in Response to Reducing Conditions. Water, Air, and Soil Pollution, 1999, 113, 411-424.	2.4	16
105	Transport of Phosphate through Artificial Macropores during Film and Pulse Flow. Journal of Environmental Quality, 2004, 33, 2263-2271.	2.0	16
106	Extraction and Determination of Glucosinolates from Soil. Journal of Agricultural and Food Chemistry, 2005, 53, 9663-9667.	5.2	16
107	Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation. Applied Clay Science, 2012, 65-66, 143-151.	5.2	16
108	The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings. Environmental Pollution, 2011, 159, 3071-3077.	7.5	15

#	Article	IF	CITATIONS
109	Determination of chlorpyrifos and acephate in tropical soils and application in dissipation studies. International Journal of Environmental Analytical Chemistry, 2008, 88, 549-560.	3.3	14
110	UPLC-MS/MS determination of ptaquiloside and pterosin B in preserved natural water. Analytical and Bioanalytical Chemistry, 2016, 408, 7981-7990.	3.7	14
111	Amino Acid-Assisted Dehalogenation of Carbon Tetrachloride by Green Rust: Inhibition of Chloroform Production. Environmental Science & Technology, 2017, 51, 3445-3452.	10.0	14
112	Fate of ptaquiloside—A bracken fern toxin—In cattle. PLoS ONE, 2019, 14, e0218628.	2.5	14
113	Indole and quinolizidine alkaloids from blue lupin leach to agricultural drainage water. Science of the Total Environment, 2022, 834, 155283.	8.0	14
114	Phosphate Sorption to Macropore Wall Materials and Bulk Soil. Water, Air, and Soil Pollution, 2002, 137, 141-148.	2.4	13
115	Extraction and determination of the potato glycoalkaloid <i>α</i> -solanine in soil. International Journal of Environmental Analytical Chemistry, 2007, 87, 813-824.	3.3	13
116	Potato glycoalkaloids in soil-optimising liquid chromatography–time-of-flight mass spectrometry for quantitative studies. Journal of Chromatography A, 2008, 1182, 65-71.	3.7	13
117	Degradation of I-polylactide during melt processing with layered double hydroxides. Polymer Degradation and Stability, 2012, 97, 2002-2009.	5.8	13
118	Redoximorphic Macropore Environments in an Agrudalf. Hydrology Research, 2001, 32, 333-352.	2.7	12
119	Rapid method for EDXRF analysis of clayey and sandy soil. X-Ray Spectrometry, 2001, 30, 186-189.	1.4	12
120	GENOTOXIC ACTIVITY AND INHIBITION OF SOIL RESPIRATION BY PTAQUILOSIDE, A BRACKEN FERN CARCINOGEN. Environmental Toxicology and Chemistry, 2005, 24, 2751.	4.3	12
121	Degradation of the Potato Glycoalkaloids – α-Solanine and α-Chaconine in Groundwater. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 668-672.	2.7	12
122	Degradation of the potato glycoalkaloid α-solanine in three agricultural soils. Chemosphere, 2009, 76, 1150-1155.	8.2	12
123	A liquid chromatography–electrospray ionization-mass spectrometry method for quantification of cyclotides in plants avoiding sorption during sample preparation. Journal of Chromatography A, 2011, 1218, 7964-7970.	3.7	12
124	Element doping of biochars enhances catalysis of trichloroethylene dechlorination. Chemical Engineering Journal, 2022, 428, 132496.	12.7	12
125	Time and Moisture Effects on Total and Bioavailable Copper in Soil Water Extracts. Journal of Environmental Quality, 2004, 33, 505.	2.0	12
126	Phosphate sorption to matrix and fracture wall materials in a Glossaqualf. Geoderma, 1999, 90, 243-261.	5.1	11

#	Article	IF	CITATIONS
127	Biostimulation and enrichment of 2,6-dichlorobenzamide-mineralising soil bacterial communities from dichlobenil-exposed soil. Soil Biology and Biochemistry, 2007, 39, 216-223.	8.8	11
128	Oxalate distribution in soils under rhubarb (Rheum rhaponticum). International Journal of Environmental Analytical Chemistry, 2004, 84, 909-917.	3.3	10
129	Bracken growth, toxin production and transfer from plant to soil: a 2-year monitoring study. Environmental Sciences Europe, 2021, 33, .	5.5	10
130	Tuning the stability and phosphate sorption of novel MnII/IVFeII/III layered double hydroxides. Chemical Engineering Journal, 2022, 429, 132177.	12.7	10
131	Thujone in soil under Thuja plicata. Scandinavian Journal of Forest Research, 2005, 20, 7-11.	1.4	9
132	Effects of including chicory in perennial ryegrass–white clover leys on production and health in organic lambs. Livestock Science, 2009, 125, 66-73.	1.6	9
133	Dissipation of cyanogenic glucosides and cyanide in soil amended with white clover (Trifolium repens) Tj ETQq1 1	0,784314 8.8	rgBT /Overl
134	Adsorption of mono- and di-butyltin by a wheat charcoal: pH effects and modeling. Chemosphere, 2012, 89, 863-868.	8.2	9
135	Phosphate mobilization and immobilization in two soils incubated under simulated reducing conditions. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1998, 48, 11-17.	0.6	8
136	Mass Balance of Cadmium in Two Contrasting Oak Forest Ecosystems. Journal of Environmental Quality, 2009, 38, 93-102.	2.0	8
137	Stability of saponin biopesticides: hydrolysis in aqueous solutions and lake waters. Environmental Sciences: Processes and Impacts, 2019, 21, 1204-1214.	3.5	8
138	A Novel Method for Determination of the Natural Toxin Ptaquiloside in Ground and Drinking Water. Water (Switzerland), 2020, 12, 2852.	2.7	8
139	Occurrence of carcinogenic illudane glycosides in drinking water wells. Environmental Sciences Europe, 2021, 33, .	5.5	8
140	A note on the description of the kinetics of phosphate sorption. European Journal of Soil Science, 2000, 51, 531-535.	3.9	7
141	Artemisinin determination and degradation in soil using supercritical fluid extraction and HPLC-UV. International Journal of Environmental Analytical Chemistry, 2009, 89, 1-10.	3.3	7
142	Biomedicine in the environment: Sorption of the cyclotide kalata B2 to montmorillonite, goethite, and humic acid. Environmental Toxicology and Chemistry, 2011, 30, 1785-1792.	4.3	7
143	Structure of single sheet iron oxides produced from surfactant interlayered green rusts. Applied Clay Science, 2019, 170, 86-96.	5.2	7
144	Removal of phytotoxins in filter sand used for drinking water treatment. Water Research, 2021, 205, 117610.	11.3	7

#	Article	IF	CITATIONS
145	Effects of sulfur application on cadmium accumulation in brown rice under wheat-rice rotation. Environmental Pollution, 2021, 287, 117601.	7.5	7
146	β-Thujaplicin:  New Quantitative CZE Method and Adsorption to Goethite. Journal of Agricultural and Food Chemistry, 2004, 52, 1452-1457.	5.2	6
147	Single sheet iron oxide based films: electrochemical properties with in situ UV-vis measurement. Journal of Materials Chemistry A, 2014, 2, 4029.	10.3	6
148	Does the natural carcinogen ptaquiloside degrade readily in groundwater?. Environmental Sciences Europe, 2021, 33, .	5.5	6
149	Iron(IV) in layered Cobalt-Iron Oxide Formed by Electrochemical Oxidation. Inorganic Chemistry, 1994, 33, 5363-5365.	4.0	4
150	Mineral changes in a danish alfisol caused by 30 years of potassium depletion in the field. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1997, 47, 1-6.	0.6	4
151	HPLC method with on-line SPE preconcentration for quantification of permethric acid sorption to goethite. International Journal of Environmental Analytical Chemistry, 2004, 84, 303-314.	3.3	4
152	Chlorinated solvent degradation in groundwater by green rust–bone char composite: solute interactions and chlorinated ethylene competition. Environmental Science: Water Research and Technology, 2021, 7, 2043-2053.	2.4	4
153	Natural toxins: environmental contaminants calling for attention. Environmental Sciences Europe, 2021, 33, .	5.5	4
154	Phosphorus in macropore walls of a Danish Glossudalf. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1997, 47, 193-200.	0.6	3
155	Occurrence and stability of ptesculentoside, caudatoside and ptaquiloside in surface waters. Environmental Sciences: Processes and Impacts, 2022, , .	3.5	1
156	Reductive debromination of bromoâ€substituted <scp>C2</scp> aliphatics using a <scp>biochar–iron</scp> (<scp>II</scp>) composite. Journal of Chemical Technology and Biotechnology, 2022, 97, 2243-2252.	3.2	1
157	Fine-tuning green rustÂâ~`Âbone char composite synthesis for efficient chlorinated ethylene remediation. Chemical Engineering Journal, 2022, 446, 136770.	12.7	1
158	Does sulfur application continue to reduce cadmium accumulation and increase the seed yield of oilseed rape (Brassica napus L.) at the maturity stage?. Journal of the Science of Food and Agriculture, 2021, , .	3.5	0